Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T02:01:57.315Z Has data issue: false hasContentIssue false

Trace fossils and biofabrics at the Precambrian–Cambrian boundary interval in western Mongolia

Published online by Cambridge University Press:  01 May 2009

R. Goldring
Affiliation:
Postgraduate Research Institute for Sedimentology, University of Reading, P.O. Box 227, Whiteknights, Reading RG6 2AB, UK
S. Jensen
Affiliation:
Department of Earth Sciences, Downing Street, Cambridge CB2 3EQ, UK

Abstract

A small suite of trace fossils from the Zavkhan Basin (Govi-Altay) includes many of the ichnotaxa typical of the Nemakit-Daldynian, Tommotian and younger Cambrian stages, and other indeterminate forms. The traces are almost entirely from the sandstone intervals of the large-scale alternations of carbonate and siliciclastic sediments, thus emphasizing the facies and taphonomic controls on trace fossil distribution, and hence the inherent difficulties in using trace fossils in detailed global correlation, especially in using first appearances. The assemblage of traces and biofabrics is seen as resulting from the partly non-uniformitarian (non-actualistic) sedimentary environments that pertained over the boundary interval, rather than as evolutionary failures and subsequently vacated environments.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpert, S., 1977. Trace fossils and the basal Cambrian boundary. In Trace Fossils 2 (eds Crimes, T. P., and Harper, J. C.), pp. 18. Geological Journal Special Issue no. 9.Google Scholar
Bottjer, D. J. & Droser, M. L., 1994. The history of Palaeozoic bioturbation. In The Palaeobiology of Trace Fossils (ed. Donovan, S. K.), pp. 155–76. The John Hopkins University Press.Google Scholar
Brasier, M. D., Cowie, J. W. & Taylor, M. E., 1994. Decision on the Precambrian—Cambrian boundary stratotype. Episodes 17, 38.CrossRefGoogle Scholar
Cowie, J. W. & Brasier, M. D., 1989. The Precambrian—Cambrian boundary. Oxford Monographs in Geology & Geophysics.Google Scholar
Crimes, T. P., 1970. Trilobite tracks and other trace fossils from the Upper Cambrian of North Wales. In Trace Fossils (eds Crimes, T. P., and Harper, J. C.), pp. 4768. Geological Journal Special Issue no. 7.Google Scholar
Crimes, T. P., 1987. Trace fossil and correlation of late Precambrian and early Cambrian strata. Geological Magazine 124, 97119.CrossRefGoogle Scholar
Crimes, T. P., 1989. Trace fossils. In The Precambrian—Cambrian boundary (eds Cowie, J. W., and Brasier, M. D.), pp. 166–85. Oxford Monographs in Geology & Geophysics.Google Scholar
Crimes, T. P., 1992. Changes in the trace fossil biota across the Proterozoic—Phanerozoic boundary. Journal of the Geological Society, London 149, 637–46.CrossRefGoogle Scholar
Crimes, T. P., 1994. The period of early evolutionary failure and the dawn of evolutionary success: the record of biotic changes across the Precambrian—Cambrian boundary. In The palaeobiology of trace fossils (ed. Donovan, S. K.), pp. 105–33. Wiley.Google Scholar
Crimes, T. P. & Anderson, M. M., 1985. Trace fossils from Late Precambrian—Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Paleontology 59, 310–43.Google Scholar
Crimes, T. P. & Fedonkin, M. A., 1994. Evolution and dispersal of deepsea traces. Palaios 9, 7483.CrossRefGoogle Scholar
Crimes, T. P. & Jiang, Zhiwen., 1986. Trace fossils from the Precambrian—Cambrian boundary candidate at Meishucun, Jinning, Yunnan, China. Geological Magazine 123, 641–9.CrossRefGoogle Scholar
Crimes, T. P., Legg, I., Marcos, A. & Arboleya, M., 1977. ?Late Precambrian—low Lower Cambrian trace fossils from Spain. In Trace Fossils 2 (eds Crimes, T. P. and Harper, J. C.), pp. 91138. Geological Journal Special Issue no. 9.Google Scholar
D’Alessandro, A. & Bromley, R. G., 1987. Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology 30, 743–63.Google Scholar
Dorjnamjaa, D. & Bat-Ireedui, Ya., 1991. The Precambrian of Mongolia. Ulaanbaatar: Geological Institute of the Mongolian Academy of Sciences, 182 pp. (in Russian).Google Scholar
Eagar, R. M. C., Baines, J. G., Hardy, P. G., Okolo, S. A. & Pollard, J. E., 1985. Trace fossil assemblages and their occurrence in Silesian (Mid-Carboniferous) deltaic sediments of the central Pennine basin, England. In Biogenic structures: their use in interpreting depositional environments (ed. Curran, H. A..), pp. 99149. Society of Economic Paleontologists and Mineralogists, Special Publication no. 35.CrossRefGoogle Scholar
Fedonkin, M. A., 1985. Paleoichnology of the Vendian Metazoa. In The Vendian System, 1, Palaeontology (eds Sokolov, B. S., and Ivanovsky, A. B.), pp. 112–17 (in Russian).Google Scholar
Fedonkin, M. A., 1988. Palaeoichnology of the Precambrian—Cambrian transition in the Russian Platform and Siberia. In Trace fossils, small shelly fossils and the Precambrian—Cambrian boundary (eds Landing, E., Narbonne, G. M., and Myrow, P.) p. 12. New York State Museum Bulletin 463.Google Scholar
Fillion, D. & Pickerill, R. K., 1990. Ichnology of the Upper Cambrian? to Lower Ordovician Bell Island and Wabena groups of eastern Newfoundland, Canada. Palaeontographica Canadiana 7, 119 pp.Google Scholar
Forbes, E., 1848. On Oldhamia, a new genus of Silurian fossils. Journal of the Geological Society of Dublin 4, 4.Google Scholar
Frey, R. W., 1990. Trace fossils and hummocky crossstratification. Palaios 5, 203–18.CrossRefGoogle Scholar
Fritz, W. H. & Crimes, T. P., 1985. Lithology, trace fossils, and correlation of Precambrian—Cambrian boundary beds, Cassiar Mountains, north-central British Columbia. Geological Survey of Canada Paper 83–13, 24 pp.Google Scholar
Hakes, W. G., 1976. Trace fossils and depositional environment of four clastic units, Upper Pennnsylvanian magacyclothems, northeast Kansas. University of Kansas Paleontological Contributions, Article 63, 46 pp.Google Scholar
Hall, J., 18471852. Paleontology of New York 1, 338 pp., 362 pp. Albany, NY: State of New York.Google Scholar
Hantzpergue, P. & Branger, P., 1992. L’ichnogenre Paleodictyon dans les depots neritiques de l’oxfordien superieur nord-aquitain (France). Geobios 25, 195205.CrossRefGoogle Scholar
Hitchcock, E., 1858. Ichnology of New England. A report on the sandstone of the Connecticut Valley, especially its footprints. Boston: W. White, 220 pp.Google Scholar
Hofmann, H. J. & Patel, I. M., 1989. Trace fossils from the type ‘Etcheminian Series’ (Lower Cambrian Ratcliffe Brook Formation), Saint John area, New Brunswick, Canada. Geological Magazine 126, 139–57.CrossRefGoogle Scholar
Howard, J. D. & Frey, R. W., 1990. Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Canadian Journal of Earth Sciences 21, 200–19.CrossRefGoogle Scholar
Khomentovsky, V. V. & Gibsher, A. S., 1996. The Neoproterozoic—lower Cambrian in northern Govi-Altay, western Mongolia: regional setting, lithostratigraphy and biostratigraphy. Geological Magazine 133, 371–90.CrossRefGoogle Scholar
Khomentovsky, V. V. & Karlova, G. A., 1993. Biostratigraphy of the Vendian—Cambrian beds and the lower Cambrian boundary in Siberia. Geological Magazine 130, 2945.CrossRefGoogle Scholar
Ksiazkiewicz, M., 1977. Trace fossils in the flysch of the Polish Carpathians. Palaeontologka Polonica 36, 208 pp.Google Scholar
Landing, E., 1994. Precambrian—Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. Geology 22, 179–82.2.3.CO;2>CrossRefGoogle Scholar
Lindsay, J., Brasier, M. B., Dorjnamjaa, D., Goldring, R., Kruse, P. D. & Wood, R. A., 1996. Facies and sequence controls on the appearance of the Cambrian biota in southwestern Mongolia: implications for Precambrian—Cambrian boundary. Geological Magazine 133, 417–28.CrossRefGoogle Scholar
Magwood, J. P. A. & Pemberton, S. G., 1988. Trace fossils of the Gog Group; a Lower Cambrian tidal sand body. In Trace fossils, small shelly fossils and the Precambrian—Cambrian boundary (eds Landing, E., Narbonne, G. M., and Myrow, P.), p. 14. New York State Museum Bulletin 463.Google Scholar
Massalongo, A., 1855. Zoophycos, novum genus plantorum fossilium. Verona: Antonelli, 52 pp.Google Scholar
Miller, S. A., 1889. North American geology and paleontology for the use of amateurs, students and scientists. Cincinnati, Ohio: Western Methodist Book Concern, 664 pp.Google Scholar
Narbonne, G. M. & Aitken, J. D., 1990. Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology 33, 945–80.Google Scholar
Narbonne, G. M., Myrow, P., Landing, E. & Anderson, M., 1987. A candidate stratotype for the Precambrian—Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.CrossRefGoogle Scholar
Nicholson, H. A., 1873. Contributions to the study of the errant annelides of the older Palaeozoic. Proceedings of the Royal Society of London 21, 288–90.Google Scholar
Osgood, R. G., 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana 6, 281444.Google Scholar
Paczesna, J., 1985. Ichnorodzaj Paleodictyon Meneghini z dolnego Kambru Zbilutki (Gory Swietokrzyskie). Kwartalnik Geologicviy 29, 589–95.Google Scholar
Palij, V. M., 1976. Remains of soft-bodied fauna and trace fossils from the upper Precambrian and Lower Cambrian of Podolia. In Palaeontology and Stratigraphy of the upper Precambrian and Lower Paleozoic of the southwest part of the East-European Platform, pp. 6377. Kiev: Naukova Dumka (in Russian).Google Scholar
Palij, V. M., Posti, E. & Fedonkin, M. A., 1979. Soft-bodied metazoa and animal trace fossils in the Vendian and early Cambrian. In Upper Precambrian and Cambrian palaeontology of the East-European Platform (eds Keller, B. M., and Rozanov, A. Yu.), pp. 4982. Moscow: Nauka. (English translation 1983 (eds Urbanek, A. and Rozanov, A. Yu.), pp. 56–94. Warszawa: Wydawnictwa Geologiczne Publishing House).Google Scholar
Pemberton, S. G. & Frey, R. W., 1982. Trace fossil nomenclature and the Planolites—Palaeophycus dilemma. Journal of Paleontology 56, 843–81.Google Scholar
Pflüger, F. & Gresse, P. G., 1996. Microbial sand-chips—a non-actualistic sedimentary structure. Sedimentary Geology 102, 263–74.CrossRefGoogle Scholar
Pickerill, R. K. & Peel, J. S., 1991. Gordia nodosa isp. nov. and other trace fossils from the Cass Fjord Formation (Cambrian) of North Greenland. Grønlands geologiske undersøgelse, Rapport 150, 1528.CrossRefGoogle Scholar
Richter, R., 1850. Aus der thüringischen Grauwacke. Zeitschrift der Deutschen Geologische Gesellschaft 2, 198206.Google Scholar
Rindsberg, A., 1994. Ichnology of the Upper Mississippian Hartsville Sandstone of Alabama, with notes on other Carboniferous formations. Bulletin of the Geological Survey of Alabama 158, 107 pp.Google Scholar
Roedel, H., 1929. Ergänzung zu meiner Mitteilung über ein kambrisches Geschiebe mit problematischen Spuren. Zeitschrift für Geschiebeforschung 5, 4851.Google Scholar
Sacco, F., 1886. Intorno ad alcume impronte organiche dei terreni terziari del Piemonte. Atti delta Reale Accademie delle Scienze di Torino 21, 927–19.Google Scholar
Schaffer, F. X., 1928. Hormosiroidea florentina n.g., n.sp., ein Fucus aus der Kreide der Umgebung von Florenz. Palaontologisches Zeitschrift 10, 212–15.CrossRefGoogle Scholar
Schafhäutl, K. E., 1851. Geognostische Untersuchungen des Südbayrichen Alpengebirges. München: Literarischartistische Anstalt, 208 pp.Google Scholar
Seilacher, A., 1955. Spuren und Fazies im Unterkambrium. In Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan) (eds Schindewolf, O. H., and Seilacher, A.), pp. 373–99. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur in Mainz Jahrgang 1955.Google Scholar
Seilacher, A., 1957. An-actualistiches Wattenmeer? Palüontologisches Zeitschrift 31, 198206.CrossRefGoogle Scholar
Seilacher, A., 1970. Cruziana stratigraphy of non-fossiliferous Palaeozoic sandstones. In Trace Fossils (eds Crimes, T. P., and Harper, C.), pp. 447–76. Geological Journal Special Issue no. 7.Google Scholar
Seilacher, A., 1977. Pattern analysis of Paleodictyon and related trace fossils. In Trace Fossils 2 (eds Crimes, T. P., and Harper, J. C.), pp. 289334. Geological Journal Special Issue no.9.Google Scholar
Seilacher, A., 1983. Upper Palaeozoic trace fossils from the Gilf Kebir-Abu Ras area in southwestern Egypt. Journal of African Earth Sciences 1, 2134.Google Scholar
Seilacher, A., 1985. Trilobite palaeobiology and substrate relationships. Transactions of the Royal Society of Edinburgh 76, 231–7.CrossRefGoogle Scholar
Seilacher, A., 1986. Evolution of behaviour as expressed in marine trace fossils. In Evolution of animal behaviour: palaeoecological and field approaches (eds Nitecki, M. H. G., and Kitchell, J. A.), pp. 6287. Oxford University Press.Google Scholar
Seilacher, A. & Goldring, R., In press. Psammocorallia (Coelenterate, Vendian — Ordovician): systematics and distribution. GFF.Google Scholar
Seilacher, A. & Pflüger, F., 1995. From biomats to benthic agriculture: a biohistoric revolution. In Biostabilization of sediments (eds Krumbein, W. E., Paterson, D. M., and Stal, L. J.), pp. 97105. Oldenburg: Bibliotheks und Informationssystem der Universität Oldenburg.Google Scholar
Seposki, J. J., Bambach, R. K. & Droser, M. L., 1991. Secular changes in Phanerozoic event bedding and biological overprint. In Cycles and Events in Stratigraphy (eds Einsele, G., Ricken, W., and Seilacher, A.), pp. 298312. Springer Verlag.Google Scholar
Sheldon, R. W., 1968. Probable gastropod tracks from the Kinderscout Grit of Soyland moor, Yorkshire. Geological Magazine 105, 365–6.CrossRefGoogle Scholar
Stanley, D. C. A. & Pickerill, R. K., 1993. Shallow marine Paleodictyon from the Upper Ordovician Georgian Bay Formation of southern Ontario. Atlantic Geology 29, 115–19.CrossRefGoogle Scholar
Torell, O., 1870. Petrificata Suecana Formationis Cambricae. Lunds Universitet Årsskrift 4, 140.Google Scholar
Vldal, G., Moczydlowska, M. & Rudavskaya, V. R., 1995. Constraints on the early Cambrian radiation and correlation of the Tommotian and Nemakit-Daldynian regional stages of eastern Siberia. Journal of the Geological Society, London 152, 499510.Google Scholar
Voronin, Y. I., Voronova, L. G., Grigor’eva, N. V. & Others. 1982. The Precambrian—Cambrian boundary in the geosynclinal areas (the reference section Salanygol, MPR). Moscow: Nauka, 150 pp. (in Russian).Google Scholar
Walker, R. G. & Plint, A. G., 1992. Wave-and stormdominated shallow marine systems. In Facies models (eds Walker, R. G., and James, N. P.), pp. 219–38. Geological Association of Canada.Google Scholar
Walter, M. R., Elphinstone, R. & Heys, G. R., 1989. Proterozoic and early Cambrian trace fossils from the Amadeus and Georgina Basins, central Australia. Alcheringa 13, 209–56.CrossRefGoogle Scholar
Webby, B. D., 1969. Late Precambrian trace fossils from New South Wales. Lethaia 3, 79109.CrossRefGoogle Scholar
Yochelson, E. L. & Schindel, D. E., 1978. A reexamination of the Pennsylvanian trace fossil Olivellites. Journal of Research, United States Geological Survey 6, 789–96.Google Scholar
Young, F. G., 1972. Early Cambrian and older trace fossils from the southern Cordillera of Canada. Canadian Journal of Earth Sciences 9, 117.CrossRefGoogle Scholar