Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T13:55:55.922Z Has data issue: false hasContentIssue false

Tracing the 1271–1246 Ma Central Scandinavian Dolerite Group mafic magmatism in Fennoscandia: U–Pb baddeleyite and Hf isotope data on the Moslätt and Børgefjell dolerites

Published online by Cambridge University Press:  24 January 2011

LINUS BRANDER*
Affiliation:
Department of Earth Sciences, University of Gothenburg, Box 460, SE-405 30, Gothenburg, Sweden
ULF SÖDERLUND
Affiliation:
Department of Earth and Ecosystem Sciences, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
BERNARD BINGEN
Affiliation:
Geological Survey of Norway, 7491 Trondheim, Norway
*
Author for correspondence: linus@gvc.gu.se

Abstract

Between 1271 and 1246 Ma, dolerite dykes and sills of the Central Scandinavian Dolerite Group intruded into the Fennoscandian Shield during three distinct magmatic pulses. They are distributed around five large magmatic complexes extending from Sweden to western Finland and record large-scale intracratonic tensional stress. Coeval plutonism is observed in the westernmost terrane of the Sveconorwegian orogen in southern Norway, but differs in the sense of a bimodal character and uncertain Fennoscandian ancestry of the host terrane. We report a U–Pb baddeleyite age of 1269 ± 12 Ma for a gabbronoritic member of an E-trending set of dykes, called the Moslätt Dolerites, near Lake Vättern in southern Sweden, much farther to the south than any previously known Central Scandinavian Dolerite Group rock. A similar age of approximately 1275 Ma is obtained for a meta-dolerite sheet in the Børgefjell basement window in the Scandinavian Caledonides in Mid-Norway. The initial epsilon-Hf values for these two dykes are +3.9 and +10.1, respectively, and correspond to the range of values for other occurrences of the Central Scandinavian Dolerite Group (+4.7 to +10.3). They add to the evidence that the Central Scandinavian Dolerite Group is characterized by more positive epsilon values (depleted source) than other mafic Proterozoic suites in Fennoscandia. These results extend the distribution of c. 1270–1245 Ma mafic magmatism in Fennoscandia, particularly when accounting for significant Caledonian shortening. The Central Scandinavian Dolerite Group and coeval bimodal magmatism in S Norway may represent distal magmatic events related to a Mesoproterozoic subduction along the western margin of Fennoscandia rather than hotspot (mantle plume) activity as previously suggested.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T., Griffin, W. L. & Pearson, N. J. 2002. Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. Journal of Petrology 43, 1725–47.CrossRefGoogle Scholar
Aro, K. 1987. Diabases in the Vaasa archipelago and Pealothi, western Finland. In Diabases and other Mafic Dyke Rocks in Finland (eds Aro, K. & Laitakari, I.), pp. 179–84. Geological Survey of Finland, Report of Investigation 76.Google Scholar
Austrheim, H., Corfu, F., Bryhni, I. & Andersen, T. B. 2003. The Proterozoic Hustad igneous complex, a low strain enclave with a key to the history of the Western Gneiss Region of Norway. Precambrian Research 120, 149–75.CrossRefGoogle Scholar
Bingen, B., Davis, W. J. & Austrheim, H. 2001. Zircon U-Pb geochronology in the Bergen Arc eclogites and their Proterozoic protoliths, and implications for the pre-Scandian evolution of the Caledonides in western Norway. Geological Society of America Bulletin 113, 640–9.2.0.CO;2>CrossRefGoogle Scholar
Bingen, B., Mansfeld, J., Sigmond, E. M. O. & Stein, H. 2002. Baltica-Laurentia link during the Mesoproterozoic: 1.27 Ga development of continental basins in the Sveconorwegian Orogen, southern Norway. Canadian Journal of Earth Sciences 39, 1425–40.CrossRefGoogle Scholar
Bingen, B., Nordgulen, Ø. & Viola, G. 2008. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norwegian Journal of Geology 88, 4372.Google Scholar
Bingen, B., Skår, Ø., Marker, M., Sigmond, E. M. O., Nordgulen, Ø., Ragnhildstveit, J., Mansfeld, J., Tucker, R. D. & Liégeois, J. P. 2005. Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Norwegian Journal of Geology 85, 87116.Google Scholar
Bouvier, A., Vervoort, J. D. & Patchett, P. J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 4857.CrossRefGoogle Scholar
Brander, L., Appelquist, K., Cornell, D. & Andersson, U. B. In press. Igneous and metamorphic geochronologic evolution of granitoids in the central Eastern Segment, southern Sweden. International Geology Review.Google Scholar
Brander, L. & Söderlund, U. 2009. Mesoproterozoic (1.47–1.44 Ga) orogenic magmatism in Fennoscandia; baddeleyite U-Pb dating of a suite of massif-type anorthosite in S. Sweden. International Journal of Earth Sciences (Geologische Rundschau) 98, 499516.CrossRefGoogle Scholar
Brewer, T. S., Åhäll, K. -I., Menuge, J. F., Storey, C. D. & Parrish, R. R. 2004. Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pre-Sveconorwegian continental margin tectonism. Precambrian Research 134, 249–73.CrossRefGoogle Scholar
Buchan, K. L., Goutier, J., Hamilton, M. A., Ernst, R. E. & Matthews, W. A. 2007. Paleomagnetism, U-Pb geochronology, and geochemistry of Lac Esprit and other dyke swarms, James Bay area, Quebec, and implications for Paleoproterozoic deformation of the Superior Province. Canadian Journal of Earth Sciences 44, 643–64.CrossRefGoogle Scholar
Corfu, F. & Laajoki, K. 2008. An uncommon episode of mafic magmatism at 1347 Ma in the Mesoproterozoic Telemark supracrustals, Sveconorwegian orogen – implications for stratigraphy and tectonic evolution. Precambrian Research 160, 299307.CrossRefGoogle Scholar
Davidson, A. & van Breemen, O. 1988. Baddeleyite-zircon relationships in coronitic metagabbro, Grenville Province, Ontario: implications for geochronology. Contributions to Mineralogy and Petrology 100, 291–9.CrossRefGoogle Scholar
De Wall, H. & Greiling, R. O. 2000. Remagnetisation and magnetic refraction in Proterozoic dykes from central Scandinavia during Caledonian deformation. Physics and Chemistry of the Earth part A – Solid Earth and Geodesy 25, 519–24.CrossRefGoogle Scholar
Elming, S. Å. & Mattsson, H. 2001. Post Jotnian basic intrusions in the Fennoscandian Shield, and the break up of Baltica from Laurentia: a palaeomagmatic and AMS study. Precambrian Research 108, 215–36.CrossRefGoogle Scholar
Ernst, R. E., Buchan, K. L. & Campbell, I. H. 2005. Frontiers in Large Igneous Province research. Lithos 79, 271–97.CrossRefGoogle Scholar
Gorbatschev, R., Lindh, A., Solyom, Z., Laitakari, I., Aro, K., Lobach-Zhuchenko, S. B., Markov, M. S., Ivliev, A. I. & Bryhni, I. 1987. Mafic dyke swarms of the Baltic Shield. In Mafic Dyke Swarms (eds Halls, H. C. & Fahrig, W. F.), pp. 361372. Geological Association of Canada, Special Paper 34.Google Scholar
Gorbatschev, R., Solyom, Z. & Johansson, I. 1979. The Central Scandinavian Dolerite Group in Jämtland, central Sweden. Geologiska Föreningens i Stockholm Förhandlingar 101, 177–90.CrossRefGoogle Scholar
Greiling, R. O., Garfunkel, Z. & Zachrisson, E. 1998. The orogenic wedge in the central Scandinavian Caledonides: Scandian structural evolution and possible influence on the foreland basin. GFF 120, 181–90.CrossRefGoogle Scholar
Greiling, R. O., Grimmer, J. C., De Wall, H. & Björk, L. 2007. Mesoproterozoic dyke swarms in foreland and nappes of the central Scandinavian Caledonides: structure, magnetic fabric, and geochemistry. Geological Magazine 144, 525–46.CrossRefGoogle Scholar
Gustavson, M. & Grønhaug, A. 1960. En geologisk undersøkelse på den nordvestlige del av kartblad Børgefjell. Norges Geologiske Undersøkelse 211, 2674.Google Scholar
Hämäläinen, A. 1987. The Postjotnian diabases of Satakunta. In Diabases and other Mafic Dyke Rocks in Finland (eds Aro, K. & Laitakari, I.), pp. 173178. Geological Survey of Finland, Report of Investigation 76.Google Scholar
Högdahl, K., Andersson, U. B. & Eklund, O. (eds.) 2004. The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland Special Paper 37, 4758.Google Scholar
Hogmalm, K. J., Söderlund, U., Larson, S. Å., Meurer, W. P., Hellström, F. A. & Claeson, D. T. 2006. The Ulvö Gabbro Complex of the 1.27–1.25 Ga Central Scandinavian Dolerite Group (CSDG): intrusive age, magmatic setting and metamorphic history. GFF 128, 16.CrossRefGoogle Scholar
Irvine, T. N. & Baragar, W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.CrossRefGoogle Scholar
Koistinen, T., Stephens, M. B., Bogatchev, V., Nordgulen, Ø., Wennerström, M. & Korhonen, J. 2001. Geological map of the Fennoscandian shield, Scale 1:2000000. Geological Surveys of Finland, Norway and Sweden and the North-West Department of Natural Resources of Russia.Google Scholar
Larson, S. Å., Hogmalm, K. J. & Meurer, W. P. 2008. Character and significance of spectacular layering features developed in the thin, alkali-basaltic sills of the Ulvö Gabbro Complex, Sweden. Mineralogy and Petrology 92, 427–52.CrossRefGoogle Scholar
Larsson, D. & Söderlund, U. 2005. Lu-Hf apatite geochronology of mafic cumulates: an example from a Fe-Ti-mineralization at Smålands Taberg, southern Sweden. Chemical Geology 224, 201–11.CrossRefGoogle Scholar
Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A. R. & Zanettin, B. 1989. A classification of igneous rocks and glossary of terms. Oxford: Blackwell.Google Scholar
Ludwig, K. R. 2003. Isoplot 3.0. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4.Google Scholar
Lundmark, A. M., Corfu, F., Spürgin, S. & Selbekk, R. 2007. Proterozoic evolution and provenance of the high-grade Jotun Nappe Complex, SW Norway: U-Pb geochronology. Precambrian Research 159, 133–54.CrossRefGoogle Scholar
Lundqvist, L. 1996. 1.4 Ga mafic-felsic magmatism in the southern Sweden; a study of the Axamo Dyke Swarm and a related Anorthosite-Gabbro. Ph.D. thesis for Licentiate Degree. Gothenburg University.Google Scholar
Lundqvist, T. & Samuelsson, L. 1973. The differentiation of a dolerite at Nordingrå, central Sweden. Sveriges geologiska undersökning C692, 162.Google Scholar
Mørk, M. B. E. & Mearns, E. W. 1986. Sm-Nd isotopic systematics of a gabbro-eclogite transition. Lithos 19, 255–67.CrossRefGoogle Scholar
Osmundsen, P. T., Braathen, A., Nordgulen, Ø., Roberts, D., Meyer, G. B. & Eide, E. 2003. The Devonian Nesna shear zone and adjacent gneiss-cored culminations, North-Central Norwegian Caledonides. Journal of the Geological Society, London 160, 137–50.CrossRefGoogle Scholar
Patchett, P. J., Lehnert, K., Rehkämper, M. & Sieber, G. 1994. Mantle and crustal effects on the geochemistry of Proterozoic dikes and sills in Sweden. Journal of Petrology 35, 1095–125.CrossRefGoogle Scholar
Pedersen, S., Andersen, T., Konnerup-Madsen, J. & Griffin, W. L. 2009. Recurrent Mesoproterozoic continental magmatism in South-Central Norway. International Journal of Earth Sciences 98, 1151–71.CrossRefGoogle Scholar
Persson, P. O, Wahlgren, C. H. & Hansen, B. T. 1983. U-Pb ages of Proterozoic metaplutonics in the gneiss complex of southern Värmland, south-western Sweden. Geologiska Föreningens i Stockholm Förhandlingar 105, 18.CrossRefGoogle Scholar
Robinson, P., Roberts, D. & Gee, D. G. 2008. Guidebook. 33rd IGC excursion No 34, August 15–24, 2008. A tectonostratigraphic transect across the central Scandinavian Caledonides. Geological Survey of Norway, Report 2008.064.Google Scholar
Schärer, U. 1980. U-Pb and Rb-Sr dating of a polymetamorphic nappe terrain: the Jotun Nappe, southern Norway. Earth and Planetary Science Letters 49, 205–18.CrossRefGoogle Scholar
Scherer, E., Munker, C. & Mezger, K. 2001. Calibration of the lutetium-hafnium clock. Science 293, 683–7.CrossRefGoogle ScholarPubMed
Söderlund, U., Elming, S.-Å., Ernst, R. E. & Schissel, D. 2006. The Central Scandinavian Dolerite Group – Protracted hotspot activity or back-arc magmatism? Constraints from U-Pb baddeleyite geochronology and Hf isotopic data. Precambrian Research 150, 136–52.CrossRefGoogle Scholar
Söderlund, U., Hellström, F. A. & Kamo, S. L. 2008. Geochronology of high-pressure mafic granulite dykes in SW Sweden; tracking the P-T-t path of metamorphism using Hf isotopes in zircon and baddeleyite. Journal of Metamorphic Geology 26, 539–60.CrossRefGoogle Scholar
Söderlund, U., Isachsen, C., Bylund, G., Heaman, L., Patchett, P. J., Vervoort, J. D. & Andersson, U. B. 2005. U-Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga. Contributions to Mineralogy and Petrology 150, 174–94.CrossRefGoogle Scholar
Söderlund, U. & Johansson, L. 2002. A simple way to extract baddeleyite (ZrO2). Geochemistry Geophysics Geosystems 3, doi 101029/2001GC000212.CrossRefGoogle Scholar
Söderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. 2004 a. The decay constant of 176Lu determined from Lu-Hf and U-Pb isotope systematics of terrestrial Precambrian high-temperature mafic intrusions. Earth and Planetary Science Letters 219, 311–24.CrossRefGoogle Scholar
Söderlund, P., Söderlund, U., Möller, C., Gorbatschev, R. & Rodhe, A. 2004 b. Petrology and ion microprobe U-Pb chronology applied to a metabasic intrusion in southern Sweden: a study on zircon formation during metamorphism and deformation. Tectonics 23, 116.CrossRefGoogle Scholar
Solyom, Z., Lindqvist, J.-E. & Johansson, I. 1992. The geochemistry, genesis, and geotectonic setting of Proterozoic mafic dyke swarms in southern and central Sweden. GFF 114, 4765.Google Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on Geochronology Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Suominen, V. 1991. The chronostratigraphy of southwestern Finland, with special reference to Postjotnian and Subjotnian diabases. Geological Survey of Finland Bulletin 356, 1100.Google Scholar
Vervoort, J. D. & Blichert-Toft, J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63, 533–56.CrossRefGoogle Scholar
Vervoort, J. D., Patchett, P. J., Söderlund, U. & Baker, M. 2004. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochemistry Geophysics Geosystems 5, doi:10.1029/2004GC000721.CrossRefGoogle Scholar