Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T11:01:35.323Z Has data issue: false hasContentIssue false

Treptichnus pedum and the Ediacaran–Cambrian boundary: significance and caveats

Published online by Cambridge University Press:  22 August 2017

LUIS A. BUATOIS*
Affiliation:
Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
*
*Author for correspondence: luis.buatois@usask.ca

Abstract

The Ediacaran–Cambrian (E-C) boundary is based on the first appearance of the ichnofossil Treptichnus pedum. Investing an ichnotaxon with such biostratigraphic pre-eminence has been the focus of criticism. Points of contention have revolved around four main issues: (1) ichnotaxonomy, (2) behavioural significance, (3) facies controls and (4) stratigraphic occurrence. First, confusion results from the fact that Treptichnus pedum was originally referred to as Phycodes pedum and, more recently, some authors have placed it in Trichophycus or Manykodes. However, the overall geometry of these burrows indicates they belong in Treptichnus. Second, regardless of its precise mode of feeding, the behaviour involved is iconic of the Cambrian explosion. Third, objections are based on the idea that trace fossils show a closer link to facies than body fossils. Notably, in contrast to common assumptions, T. pedum is not only present in the low-energy offshore of wave-dominated marine settings, but it occurs at considerably shallower water in intertidal and shallow-subtidal zones of tide-dominated systems, as well as in mouth bars of deltaic systems and lower shoreface to offshore transition zones of wave-dominated marine settings. Its broad environmental tolerance supports evolutionary innovations rather than facies controls as the main mechanism underlying the observed vertical pattern of distribution of T. pedum in most E-C successions comprising shallow-marine deposits. Fourth, although treptichnids have been documented below the E-C boundary, T. pedum is not known from Ediacaran rocks. The delayed appearance of T. pedum in E-C successions should be analysed on a case-by-case basis.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almond, J. E., Buatois, L. A., Gresse, P. G. & Germs, G. J. B. 2008. Trend in metazoan body size, burrowing behaviour and ichnodiversity across Precambrian-Cambrian boundary: ichnoassemblages from the Vanrhynsdorp Group of South Africa. Conference Programs and Abstracts, 15th Biennial Meeting of the Palaeontological Society of Southern Africa: Matjiesfontein, 15–20.Google Scholar
Babcock, L. E., Peng, S., Zhu, M., Xiao, S. & Ahlberg, P. 2014. Proposed reassessment of the Cambrian GSSP. Journal of African Earth Sciences 98, 310.Google Scholar
Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláš, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Schlirf, M. & Uchman, A. 2006. Names for trace fossils: a uniform approach. Lethaia 39, 265–86.Google Scholar
Brasier, M., Cowie, J. & Taylor, M. 1994. Decision on the Precambrian-Cambrian boundary stratotype. Episodes 17, 38.Google Scholar
Bromley, R. G. 1990. Trace Fossils: Biology and Taphonomy. London: Unwin Hyman, 280 pp.Google Scholar
Buatois, L. A., Almond, J. & Germs, G. J. B. 2013. Environmental tolerance and range offset of Treptichnus pedum: implications for the recognition of the Ediacaran–Cambrian boundary. Geology 41, 519–22.Google Scholar
Buatois, L. A., Almond, J., Gresse, P. & Germs, G. 2007. The elusive Proterozoic-Cambrian boundary: ichnologic data from the Vanrhynsdorp Group of South Africa. Abstracts, 9th International Ichnofabric Workshop, 13–18 August 2007, Calgary, Alberta, Canada, 8.Google Scholar
Buatois, L. A. & Mángano, M. G. 2011. Ichnology: The Role of Organism-Substrate Interactions in Space and Time. Cambridge: Cambridge University Press, 346 pp.Google Scholar
Buatois, L. A. & Mángano, M. G. 2016. Ediacaran ecosystems and the dawn of animals. In The Trace-Fossil Record of Major Evolutionary Changes, Vol. 1: Precambrian and Paleozoic (eds Mángano, M. G. & Buatois, L. A.), pp. 2772. Topics in Geobiology 39. Dordrecht: Springer.Google Scholar
Daily, B. 1973. Discovery and significance of basal Cambrian Uratanna Formation, Mt. Scott Range, Flinders Ranges, South Australia. Search 4, 202–5.Google Scholar
Dzik, J. 2005. Behavioral and anatomical unity of the earliest burrowing animals and the cause of the ‘Cambrian explosion’. Paleobiology 31, 503–21.Google Scholar
Gehling, J. G. 2000. Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Research 100, 6595.Google Scholar
Gehling, J. G., Jensen, S., Droser, M. L., Myrow, P. M. & Narbonne, G. M. 2001. Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland. Geological Magazine 138, 213–8.Google Scholar
Germs, G. J. B. 1972. New shelly fossils from Nama Group, south-west Africa. American Journal of Science 272, 752–61.Google Scholar
Geyer, G. & Uchman, A. 1995. Ichnofossil assemblages from the Nama Group (Neoproterozoic-Lower Cambrian) in Namibia and the Proterozoic-Cambrian boundary problem revisited. Beringeria Special Issue 2, 175202.Google Scholar
Goldring, R. & Jensen, S. 1996. Trace fossils and biofabrics at the Precambrian–Cambrian boundary interval in western Mongolia. Geological Magazine 133, 403–15.Google Scholar
Gresse, P. G. 1992. The Tectono-Sedimentary History of the Vanrhynsdorp Group. Memoirs of the Geological Survey of South Africa 79, 163 pp.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z. & Kaufman, A. J. 1995. Biostratigraphic and geochronological constraints on early animal evolution. Science 270, 598604.Google Scholar
Hamdi, B., Brasier, M. D. & Jiang, Z. W. 1989. Earliest skeletal fossils from Precambrian Cambrian boundary strata, Elburz Mountains, Iran. Geological Magazine 126, 283–9.Google Scholar
Högström, A. E., Jensen, S., Palacios, T. & Ebbestad, J. O. R. 2013. New information on the Ediacaran–Cambrian transition in the Vestertana Group, Finnmark, northern Norway, from trace fossils and organic-walled microfossils. Norwegian Journal of Geology 93, 95106.Google Scholar
Jensen, S. 1997. Trace fossils from the Lower Cambrian Mickwitzia Sandstone, south-central Sweden. Fossils and Strata 42, 111 pp.Google Scholar
Jensen, S. 2003. The Proterozoic and earliest trace fossil record: patterns, problems and perspectives. Integrative and Comparative Biology 43, 219–28.Google Scholar
Jensen, S., Droser, M. L. & Gehling, J. G. 2006. A critical look at the Ediacaran trace fossil record. In Neoproterozoic Geobiology and Paleobiology (eds Kaufman, J. & Xiao, S.), pp. 115–57. Topics in Geobiology 27. Dordrecht: Springer.Google Scholar
Jensen, S., Droser, M. L. & Heim, N.A. 2002. Trace fossils and ichnofabrics of the Lower Cambrian Wood Canyon Formation, southwest Death Valley area. In Proterozoic-Cambrian of the Great Basin and Beyond, SEPM Fieldtrip Guidebook (ed. Corsetti, F. A.), pp. 123–35. Fullerton, CA: Pacific Section of the SEPM.Google Scholar
Jensen, S., Gehling, J.G. & Droser, M.L. 1998. Ediacara-type fossils in Cambrian sediments. Nature 393, 567–9.Google Scholar
Jensen, S., Högström, A. E., Høyberget, M., Meinhold, G., Palacios, T., Taylor, W. L., Ebbestad, J. O. R. & Agić, H. 2017. Trace fossils across the Ediacaran-Cambrian boundary on the Digermulen Peninsula, Arctic Norway. International Symposium on the Ediacaran-Cambrian Transition, 20–22 June 2017, St John's, Newfoundland, Canada. Abstract Volume, p. 48.Google Scholar
Jensen, S. & Runnegar, B. N. 2005. A complex trace fossil from the Spitskop Member (terminal Ediacaran–? Lower Cambrian) of southern Namibia. Geological Magazine 142, 561–9.Google Scholar
Jensen, S., Saylor, B. Z., Gehling, J. G. & Germs, G. J. 2000. Complex trace fossils from the terminal Proterozoic of Namibia. Geology 28, 143–6.Google Scholar
Laing, B., Buatois, L. A., Mángano, M. & Narbonne, G. 2016. Redefining the Treptichnus pedum Ichnofossil Assemblage Zone: a critical reassessment of the Ediacaran-Cambrian boundary. ICHNIA 2016, 6–9 May 2016, Idanha-a-Nova, Portugal. Abstract Book (eds A. Baucon, C. Neto de Carvalho & J. Rodrigues). International Ichnological Association, p. 262.Google Scholar
Landing, E. 1994. Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time. Geology 22, 179–82.Google Scholar
Landing, E., Geyer, G., Brasier, M. D. & Bowring, S. A. 2013. Cambrian evolutionary radiation: context, correlation, and chronostratigraphy – overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Science Reviews 123, 133–72.Google Scholar
Landing, E. & Kruse, P. D. 2017. Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia: Comment. Geological Society of America Bulletin, published online May 2017. doi: 10.1130/B31640.1.Google Scholar
Lindsay, J. F., Brasier, M. D., Dorjnamjaa, D., Goldring, R., Kruse, P. D. & Wood, R. A. 1996. Facies and sequence controls on the appearance of the Cambrian biota in southwestern Mongolia: implications for the Precambrian–Cambrian boundary. Geological Magazine 133, 417–28.Google Scholar
Linnemann, U., Ovtcharova, M., Schaltegger, U., Vickers-Rich, P., GÄrtner, A., Hofmann, M., Zieger, J., Krause, R., Kriesfeld, L. & Smith, J. 2017. New geochronological and stratigraphic constraints on the Precambrian-Cambrian boundary (Swarpunt section, South Namibia). International Symposium on the Ediacaran-Cambrian Transition, 20–22 June 2017, St John's, Newfoundland, Canada. Abstract Volume, p. 63.Google Scholar
MacEachern, J. A., Bann, K. L., Gingras, M. K., Zonneveld, J. P., Dashtgard, S. E. & Pemberton, S. G. 2012. The ichnofacies paradigm. In Trace Fossils as Indicators of Sedimentary Environments (eds Knaust, D. & Bromley, R. G.), pp. 103–38. Developments in Sedimentology 64. Amsterdam: Elsevier.Google Scholar
MacNaughton, R. B. & Narbonne, G. M. 1999. Evolution and ecology of Neoproterozoic-Lower Cambrian trace fossils, NW Canada. Palaios 14, 97115.Google Scholar
Mángano, M. G. & Buatois, L. A. 2011. Timing of infaunalization in shallow-marine early Paleozoic communities in high-latitude Gondwanic settings: discriminating evolutionary, environmental and paleogeographic controls. Paleontologica Electronica 14, 121.Google Scholar
Mángano, M. G. & Buatois, L. A. 2014. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proceedings of the Royal Society London, Series B 281, 19.Google Scholar
Mángano, M. G. & Buatois, L. A. 2016. The Cambrian explosion. In The Trace-Fossil Record of Major Evolutionary Changes, Vol. 1: Precambrian and Paleozoic (eds Mángano, M. G. & Buatois, L. A.), pp. 73126. Topics in Geobiology 39. Dordrecht: Springer.Google Scholar
Mount, J. F. & McDonald, C. 1992. Influence of changes in climate, sea level, and depositional systems on the fossil record of the Neoproterozoic–early Cambrian metazoan radiation, Australia. Geology 20, 1031–4.Google Scholar
Mount, J. F. & Signer, P. W. 1992. Faunas and facies – fact and artifact: paleoenvironmental controls on the distribution of Early Cambrian faunas. In Origin and Early Evolution of the Metazoa (Lipps, J. H. & Signer, P. W.), pp. 2751. Topics in Geobiology 10. New York: Plenum Press.Google Scholar
Muniz-Guinea, F., Mángano, M. G., Buatois, L. A., Podeniene, V., Gamez, J. A. & Mayoral, E. 2014. Compound biogenic structures resulting from ontogenetic variation: an example from a modern dipteran. Spanish Journal of Palaeontology 29, 8394.Google Scholar
Myrow, P. M. & Hiscott, R. N. 1993. Depositional history and sequence stratigraphy of the Precambrian-Cambrian boundary stratotype section, Chapel Island Formation, southwest Newfoundland. Palaeogeography Palaeoclimatology Palaeoecology 104, 1335.Google Scholar
Narbonne, G. M., Myrow, P. M. & Anderson, M. M. 1987. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.Google Scholar
Neto de Carvalho, C. 2008. Younger and deeper: Treptichnus (Phycodes) pedum (Seilacher) from the Lower Devonian of Barrancos, Ossa Morena Zone (Portugal). Comunicações Geológicas 95, 167–71.Google Scholar
Osgood, R. G. Jr. 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana 6, 281444.Google Scholar
Patzkowsky, M. E. & Holland, S. M. 2012. Stratigraphic Paleobiology: Understanding the Distribution of Fossil Taxa in Time and Space. Chicago: Chicago University Press, 259 pp.Google Scholar
Pemberton, S. G., MacEachern, J. A. & Frey, R. W. 1992. Trace fossils facies models: environmental and allostratigraphic significance. In Facies Models and Sea Level Changes (eds Walker, R. G. & James, N. P.), pp. 4772. Ottawa: Geological Association of Canada.Google Scholar
Peng, S., Babcock, L. E. & Cooper, R. A. 2012. The Cambrian Period. In The Geologic Time Scale 2012 Volume 1 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 437–88. Amsterdam: Elsevier.Google Scholar
Qian, Y., Li, G. X. & Zhu, M. Y. 2001. The Meishucunian Stage and its small shelly fossil sequences in China. Acta Palaeontologica Sinica 40, 5462.Google Scholar
Schmitz, M.D. 2012. Radiometric ages used in GTS2012. In The Geologic Time Scale 2012 Volume 2 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 1045–82. Amsterdam: Elsevier.Google Scholar
Seilacher, A. 1955. Spuren und fazies im Unterkambrium. In Beitrage zur Kenntnis des Kambriums in der Salt Range (Pakistan) (eds Schindewolf, O. H. & Seilacher, A.), pp. 373–99. Abhandlungen 10. Mainz: Akademie der Wissenschaften und der Literatur zu Mainz, Mathematisch-Naturwissenschaftliche Klasse.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios 14, 8693.Google Scholar
Seilacher, A. 2007. Trace Fossil Analysis. Dordrecht: Springer, 226 pp.Google Scholar
Shahkarami, S., Mángano, M. G. & Buatois, L. A. 2017. Discriminating ecological and evolutionary controls during the Ediacaran–Cambrian transition: trace fossils from the Soltanieh Formation of northern Iran. Palaeogeography Palaeoclimatology Palaeoecology 476, 1527.Google Scholar
Shahkarami, S., Mángano, M. G. & Buatois, L. A. In press. Ichnostratigraphy of the Ediacaran–Cambrian boundary: new insights on lower Cambrian biozonations from the Soltanieh Formation of northern Iran. Journal of Paleontology.Google Scholar
Smith, E. F., Macdonald, F. A., Petach, T. A. & Bold, U. 2017. Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia. Geological Society of America Bulletin: Reply, published online May 2017. doi: 10.1130/B31763.1.Google Scholar
Smith, E. F., Macdonald, F. A., Petach, T. A., Bold, U. & Schrag, D. P. 2016 a. Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia. Geological Society of America Bulletin 128, 442–68.Google Scholar
Smith, E. F., Nelson, L. L., Strange, M. A., Eyster, A. E., Rowland, S. M., Schrag, D. P. & Macdonald, F. A. 2016 b. The end of the Ediacaran: two new exceptionally preserved body fossil assemblages from Mount Dunfee, Nevada, USA. Geology 44, 911–4.Google Scholar
Vannier, J., Calandra, I., Gaillard, C. & Zylinska, A. 2010. Priapulid worms: pioneer horizontal burrowers at Precambrian-Cambrian boundary. Geology 38, 711–4.Google Scholar
Wilson, J. P., Grotzinger, J. P., Fischer, W. W., Hand, K. P., Jensen, S., Knoll, A. H., Abelson, J., Metz, J. M., McLoughlin, N., Cohen, P. A. & Tice, M. M. 2012. Deep-water incised valley deposits at the Proterozoic-Cambrian boundary in southern Namibia contain abundant Treptichnus pedum . Palaios 27, 252–73.Google Scholar
Zhu, M. 1997. Precambrian–Cambrian trace fossils from eastern Yunnan, China: implications for Cambrian explosion. Bulletin of National Museum of Natural Science 10, 275312.Google Scholar
Zhu, M. Y., Li, G. X., Zhang, J. M., Steiner, M., Qian, Y. & Jiang, Z. W. 2001. Early Cambrian stratigraphy of east Yunnan, Southwestern China: a synthesis. In The Cambrian of South China (eds Zhu, M. Y., Van Iten, H., Peng, S. C. & Li, G. X.), pp. 439. Acta Palaeontologica Sinica 40.Google Scholar
Zhu, R., Li, X., Hou, X., Pan, Y., Wang, F., Deng, C. & He, H. 2009. SIMS U–Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: constraint on the age of the Precambrian–Cambrian boundary. Science in China Series D: Earth Sciences 52, 1385–92.Google Scholar