Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T00:44:58.981Z Has data issue: false hasContentIssue false

Tribes Hill–Rochdale formations in east Laurentia: proxies for Early Ordovician (Tremadocian) eustasy on a tropical passive margin (New York and west Vermont)

Published online by Cambridge University Press:  09 August 2011

ED LANDING*
Affiliation:
New York State Museum, Albany, New York 12230, USA
JONATHAN M. ADRAIN
Affiliation:
Department of Geoscience, University of Iowa, 121 Trowbridge Hall, Iowa City, Iowa 52242, USA
STEPHEN R. WESTROP
Affiliation:
Oklahoma Museum of Natural History and School of Geology and Geophysics, University of Oklahoma, Norman, Oklahoma 73072, USA
BJÖRN KRÖGER
Affiliation:
Museum für Naturkunde, Humboldt Universität zu Berlin, Invalidenstrasse 43, D–10115 Berlin, Germany
*
Author for correspondence: elanding@mail.nysed.gov

Abstract

Slow subsidence and tectonic quiescence along the New York Promontory margin of Laurentia mean that the carbonate-dominated Tribes Hill and overlying Rochdale formations serve as proxies for the magnitude and timing of Tremadocian eustatic changes. Both formations are unconformity-bound, deepening–shoaling, depositional sequences that double in thickness from the craton into the parautochthonous, western Appalachian Mountains. A consistent, ‘layer cake’ succession of member-level units of the formations persists through this region. The Tribes Hill Formation (late early Tremadocian, late Skullrockian, late Fauna B–Rossodus manitouensis Chron) unconformably overlies the terminal Cambrian Little Falls Formation as the lowest Ordovician unit on the New York Promontory. It was deposited during the strong early Tremadocian, or Stonehenge, transgression that inundated Laurentia, brought dysoxic/anoxic (d/a) slope water onto the shelf and led to deposition of the Schaghticoke d/a interval (black mudstone and ‘ribbon limestone’) on the Laurentian continental slope. The uniform lithofacies succession of the Tribes Hill includes a lower sand-rich member; a middle, dark grey to black mudstone that records d/a in eastern exposures; and an upper, shoaling-up carbonate highstand facies. A widespread (12000+ km2) thrombolitic interval in the highstand carbonate suggests the New York Promontory was rimmed by thrombolites during deposition of the Tribes Hill. Offlap and erosion of the Tribes Hill was followed by the relatively feeble sea-level rise of the Rochdale transgression (new) in Laurentia, and deposition of the Rochdale Formation. The Rochdale transgression, correlated with the Kierograptus Drowning Interval in Baltica, marks a eustatic rise. The Rochdale Formation represents a short Early Ordovician interval (early late Tremadocian, middle–late Stairsian, Macerodus dianae Chron). It correlates with a depositional sequence that forms the middle Boat Harbour Formation in west Newfoundland and with the Rte 299 d/a interval on the east Laurentian slope. The Rochdale has a lower carbonate with abundant quartz silt (Comstock Member, new) and an upper, thrombolitic (Hawk Member, new) high-stand facies. Tribes Hill and Rochdale faunas are mollusc-rich, generally trilobite-poor, and have low diversity, Laurentian faunal province conodonts. Ulrichodina rutnika Landing n. sp. is rare in Rochdale conodont assemblages. Trilobites are also low in diversity, but locally form coquinas in the middle Tribes Hill. The poorly preserved Rochdale trilobites include the bathyurid Randaynia, at least two hystricurid species and Leiostegium.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrain, J. M., Lee, D. C., Westrop, S. R., Chatterton, B. D. E. & Landing, E. 2003. Classification of the trilobite subfamilies Hystricurinae and Hintzecurinae subfam. nov., with new genera from the Lower Ordovician (Ibexian) of Idaho and Utah. Memoirs of the Queensland Museum 41, 55105.Google Scholar
Barnes, C. R. 1984. Early Ordovician eustatic events in Canada. In Aspects of the Ordovician System (ed. Bruton, D. L.), p. 3241. Palaeontological Contributions from the University of Oslo, 295.Google Scholar
Bassler, R. S. 1915. Bibliographic index of American Ordovician and Silurian fossils. Bulletin of the United States National Museum 92, 11521.CrossRefGoogle Scholar
Bernstein, L. 1992. A revised lithostratigraphy of the Lower–Middle Ordovician Beekmantown Group, St. Lawrence lowlands, Quebec and Ontario. Canadian Journal of Earth Sciences 29, 2677–94.CrossRefGoogle Scholar
Billings, E. 1859. Fossils of the Calciferous Sandrock, including those of a deposit of white limestone at Mingan, supposed to belong to the formation. Canadian Naturalist and Geologist, Proceedings of the Society of Natural History of Montreal 4, 345–67.Google Scholar
Billings, E. 1860. On some new species of fossils from the limestone at Point Levis opposite Quebec. Canadian Naturalist 5 (4), 301–24.Google Scholar
Billings, E. 1865. Palaeozoic fossils. Containing descriptions and figures of new or little known species of organic remains from the Silurian rocks. Geological Survey of Canada, Montreal 1, 169394.Google Scholar
Boyce, W. D. 1989. Early Ordovician trilobite faunas of the Boat Harbour and Catoche Formations (St. George Group) in the Boat Harbour-Cape Norman area, Great Northern Peninsula, western Newfoundland. Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 89–2, 169 pp.Google Scholar
Bradley, J. H. 1925. Trilobites of the Beekmantown in the Phillipsburg region of Quebec. Canadian Field Naturalist 39, 59.CrossRefGoogle Scholar
Brainerd, E. & Seeley, H. M. 1890. The Calciferous Formation in the Champlain valley. American Museum of Natural History Bulletin 3, 123.Google Scholar
Branson, E. B. & Mehl, M. G. 1933. Conodonts from the Jefferson City (Lower Ordovician) of Missouri. University of Missouri Studies 8, 5364.Google Scholar
Braun, M. & Friedman, G. M. 1969. Carbonate lithofacies and environments of the Tribes Hill Formation (Lower Ordovician) of the Mohawk valley, New York. Journal of Sedimentary Petrology 39, 113–35.Google Scholar
Brett, K. D. & Westrop, S. R. 1996. Trilobites of the Lower Ordovician (Ibexian) Fort Cassin Formation, Champlain valley region, New York State and Vermont. Journal of Paleontology 70, 408–27.CrossRefGoogle Scholar
Brezinski, D. K., Repetski, J. E. & Taylor, J. F. 1999. Stratigraphic and paleontologic record of the Sauk III regression in the central Appalachians. In National Park Service Paleontological Research, Volume 3 (eds Santucci, V. L. & McClelland, L.), pp. 3241. Geologic Resources Division Technical Report NPS/NRGDRD/GRDTR-99/03.Google Scholar
Bryant, I. D. & Smith, M. P. 1990. A composite tectonic-eustatic origin for shelf sandstones at the Cambrian–Ordovician boundary in North Greenland. Journal of the Geological Society, London 147, 795809.CrossRefGoogle Scholar
Cady, W. M. 1945. Stratigraphy and structure of west-central Vermont. Geological Society of America Bulletin 56, 515–58.CrossRefGoogle Scholar
Clark, D. L. & Babcock, L. C. 1971. Prairie du Chien. In Conodonts and the Biostratigraphy of the Wisconsin Paleozoic (ed. Clark, D. L.), pp. 1013. Geological and Natural History Survey, University of Wisconsin, Madison, Information Circular 19.Google Scholar
Clarke, J. M. & Schuchert, C. 1899. The nomenclature of the New York series of geological formations. Science (new series) 1899, 876–7.Google Scholar
Cleland, H. F. 1900. The Calciferous of the Mohawk valley. Bulletins of American Paleontology 3, 126.Google Scholar
Cleland, H. F. 1903. Further notes on the Calciferous (Beekmantown) Formation of the Mohawk valley, with descriptions of new species. Bulletins of American Paleontology 4, 525.Google Scholar
Dwight, W. B. 1879. On some recent explorations in the Wappinger valley limestone of Dutchess Co., N. Y. No. 2. Calciferous as well as Trenton fossils in the Wappinger Limestone at Rochdale and a Trenton locality at Newburgh, N. Y. American Journal of Science, third series 17, 289–92.Google Scholar
Dwight, W. B. 1880. Recent explorations in the Wappinger valley limestones and other formations of Dutchess Co., N. Y. No. 2. Calciferous as well as Trenton fossils in the Wappinger Limestone at Rochdale and a Trenton locality at Newburgh, N. Y. American Journal of Science, third series 17 (101), 50–4.CrossRefGoogle Scholar
Dwight, W. B. 1881. Further discoveries of fossils in the Wappinger Valley or Barnegat limestone. American Journal of Science, third series 21, 78–9.Google Scholar
Dwight, W. B. 1884. Recent explorations in the Wappinger valley limestones and other formations of Dutchess Co., N. Y. No. 4. Descriptions of Calciferous (?) fossils. American Journal of Science 27, 249–59.CrossRefGoogle Scholar
Dwight, W. B. 1901. Fort Cassin beds in the calcareous limestone of Dutchess County, New York. Geological Society of America Bulletin 12, 490–1.Google Scholar
Eichenberg, W. 1930. Conodonten aus dem Cuml des Harzes. Paläontologisches Zeitschrift 12, 177–82.CrossRefGoogle Scholar
Ethington, R. L. & Clark, D. L. 1964. Conodonts from the El Paso Formation (Ordovician) of Texas and Arizona. Journal of Paleontology 38, 685704.Google Scholar
Ethington, R. L. & Clark, D. L. 1981. Lower and Middle Ordovician conodonts from the Ibex area, western Millard County, Utah. Brigham Young University Geology Studies 28, 1155.Google Scholar
Fåhraeus, L. E. & Nowlan, G. S. 1978. Franconian (Late Cambrian) to early Champlainian (Middle Ordovician) conodonts from the Cow Head Group, western Newfoundland. Journal of Paleontology 52, 444–71.Google Scholar
Fisher, D. W. 1954. Lower Ordovician (Canadian) stratigraphy of the Mohawk valley. Bulletin of the Geological Society of America 65, 7196.CrossRefGoogle Scholar
Fisher, D. W. 1968. Geology of the Plattsburgh and Rouses Point, New York–Vermont, quadrangles. New York State Museum Map and Chart Series 10, 51 pp.Google Scholar
Fisher, D. W. 1977. Correlation of Handynian, Cambrian, and Ordovician rocks in New York State. New York State Museum Map and Chart Series 25, 76 pp.Google Scholar
Fisher, D. W. 1980 Bedrock geology of the central Mohawk valley, New York. New York State Museum Map and Chart Series 33, 44 pp.Google Scholar
Fisher, D. W. 1984. Bedrock geology of the Glens Falls–Whitehall region, New York. New York State Museum Map and Chart Series 35, 58 pp.Google Scholar
Fisher, D. W. & Mazzullo, S. J. 1976. Lower Ordovician (Gasconadian) Great Meadows Formation in eastern New York. Geological Society of America Bulletin 87, 1143–8.2.0.CO;2>CrossRefGoogle Scholar
Flower, R. H. 1964. The nautiloid order Ellesmeroceratida (Cephalopoda). New Mexico Institute of Mining and Technology, Memoir 12, 1164.Google Scholar
Flower, R. H. 1968. Fossils from the Fort Ann Formation. New Mexico Institute of Mining and Technology, Memoir 22, 2934.Google Scholar
Furnish, W. B. 1938. Conodonts from the Prairie du Chien (Lower Ordovician) beds of the upper Mississippi valley. Journal of Paleontology 12, 318–40.Google Scholar
Gordon, C. E. 1911. Geology of the Poughkeepsie quadrangle. New York State Museum Bulletin 143, 1121.Google Scholar
Haq, B. U. & Schutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science 322, 64–8.CrossRefGoogle ScholarPubMed
Harris, R. W. & Harris, B. 1965. Some West Spring Creek (Ordovician, Arbuckle) conodonts from Oklahoma. Oklahoma Geology Notes 25, 3447.Google Scholar
Hayman, N. W. & Kidd, W. S. F. 2002. The Champlain thrust system in the Whitehall–Shoreham area: influence of pre- and post-thrust normal faults on the present thrust geometry and lithofacies distribution. In Guidebook for Fieldtrips in New York and Vermont (eds McLelland, J. & Karabinos, P.), pp. A71–A7–21. New England Intercollegiate Geological Conference 94th Annual Meeting and New York State Geological Association 74th Annual Meeting, Lake George, New York, September 27–29, 2002.Google Scholar
Hintze, L. F. 1953. Lower Ordovician trilobites from western Utah and eastern Nevada. Utah Geological and Mineralogical Survey Bulletin 48, 1249.Google Scholar
Holloway, D. J. 2007. The trilobite Pseudostygina and the composition of the Styginidae, with two new genera. Paläontologische Zeitschrift 81, 116.CrossRefGoogle Scholar
Hupé, P. 1953. Classe des Trilobites. In Traité de Paléontologie. Tome 3. Les Formes Ultimes d'Invertébrés. Morphologie et Évolution. Onycophores. Arthropodes. Échinoderms. Stomocordés (ed. Piveteau, J.), pp. 44246. Paris: Masson et Cie.Google Scholar
Jenkyns, H. C. 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, London 137, 171–88.CrossRefGoogle Scholar
Jenkyns, H. C. 1988. The early Toarcian (Jurassic) anoxic event: stratigraphy and geochemical evidence. American Journal of Science 288, 101–51.CrossRefGoogle Scholar
Ji, Z. & Barnes, C. R. 1994. Lower Ordovician conodonts of the St. George Group, Port au Port Peninsula, western Newfoundland, Canada. Palaeontographica Canadiana 11, 1149.Google Scholar
Kennedy, D. J. 1980. A restudy of conodonts described by Branson and Mehl, 1933, from the Jefferson City Formation, Lower Ordovician, Missouri. Geologica et Palaeontologica 14, 4776.Google Scholar
Kennedy, D. J. 1994. Colaptoconus (Conodonta), a replacement name for Glyptoconus Kennedy, 1981 [sic, read 1980], non Glyptoconus von Moellendorff, 1894. Journal of Paleontology 68, 1417.CrossRefGoogle Scholar
Knight, I. & James, N. P. 1987. The stratigraphy of the Lower Ordovician St. George Group, western Newfoundland: the interaction between eustasy and tectonics. Canadian Journal of Earth Sciences 24, 1927–51.CrossRefGoogle Scholar
Knopf, E. B. 1927. Some results of recent work in the southern Taconic area. American Journal of Science 214, 429–58.CrossRefGoogle Scholar
Knopf, E. B. 1962. Stratigraphy and structure of the Stissing Mountain area, Dutchess County, New York. Stanford University Publications, Geological Sciences 7, 155.Google Scholar
Kröger, B. & Landing, E. 2007. The earliest Ordovician cephalopods of eastern Laurentia—ellesmerocerids of the Tribes Hill Formation, Eastern New York. Journal of Paleontology 81, 841–57.CrossRefGoogle Scholar
Kröger, B. & Landing, E. 2008. Onset of the Ordovician cephalopod radiation – evidence from the Rochdale Formation (middle Early Ordovician, Stairsian) in eastern New York. Geological Magazine 145, 490520.CrossRefGoogle Scholar
Kröger, B. & Landing, E. 2009. Cephalopods and paleoenvironments of the Fort Cassin Formation (upper Lower Ordovician), eastern New York and adjacent Vermont. Journal of Paleontology 83, 664–93.CrossRefGoogle Scholar
Kröger, B. & Landing, E. 2010. Early Ordovician community evolution with eustatic change through the middle Beekmantown Group, northeast Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 294, 174–88.CrossRefGoogle Scholar
Landing, E. 1988 a. Cambrian–Ordovician boundary in North America: revised Tremadocian correlations, unconformities, and ‘glacioeustasy.’ In The Canadian Paleontology and Biostratigraphy Seminar, Proceedings (ed. Landing, E.), pp. 4858. New York State Museum Bulletin 462.Google Scholar
Landing, E. 1988 b. Depositional tectonics and biostratigraphy of the western portion of the Taconic allochthon, eastern New York State. In The Canadian Paleontology and Biostratigraphy Seminar, Proceedings (ed. Landing, E.), pp. 96110. New York State Museum Bulletin 462.Google Scholar
Landing, E. 1998. No evidence for cycles in wave-dominated Tribes Hill Formation (Lower Ordovician, east-central New York). Northeastern Geology and Environmental Sciences 20, 208211.Google Scholar
Landing, E. 2002. Early Paleozoic sea levels and climates: new evidence from the east Laurentian shelf and slope. In Guidebook for Fieldtrips in New York and Vermont. (eds McLelland, J. & Karabinos, P.), pp. C6–1–C6–22. New England Intercollegiate Geological Conference 94th Annual Meeting and New York State Geological Association 74th Annual Meeting, Lake George, New York, September 27–29, 2002.Google Scholar
Landing, E. 2007. Ediacaran–Ordovician of east Laurentia―geologic setting and controls on deposition along the New York Promontory. In Ediacaran–Ordovician of East Laurentia―S. W. Ford Memorial Volume (ed. Landing, E.), pp. 5–24. New York State Museum Bulletin 510.Google Scholar
Landing, E. In press. The lives and deaths of the Great American Carbonate Bank in eastern Laurentia. In The Great American Carbonate Bank: The Geology and Petroleum Potential of the Cambrian–Ordovician Sauk Sequence of Laurentia (eds Derby, J. Fritz, R., Morgan, W. A., Sternbach, C., Kupecz, J., Kuykendall, M., Longacre, S. A., Medlock, P.). American Association of Petroleum Geologists Memoir (in press).Google Scholar
Landing, E., Barnes, C. R. & Stevens, K. 1986. Tempo of earliest Ordovician graptolite faunal succession: conodont-based correlations from the Tremadocian of Quebec. Canadian Journal of Earth Sciences 23, 1928–49.CrossRefGoogle Scholar
Landing, E., Benus, A. P. & Whitney, P. R. 1992. Early and early Middle Ordovician continental slope deposition: shale cycles and sandstones in the Quebec Reentrant and New York Promontory region. New York State Museum Bulletin 474, 40 pp.Google Scholar
Landing, E., Franzi, D. A., Hagadorn, J. W., Westrop, S. R., Kröger, B & Dawson, J. 2007. Cambrian of east Laurentia: field workshop in eastern New York and western Vermont. In Ediacaran–Ordovician of East Laurentia—S. W. Ford Memorial Volume (ed. Landing, E.), pp. 25–80. New York State Museum Bulletin 510.Google Scholar
Landing, E. & Kröger, B. 2009. The oldest cephalopods from east Laurentia. Journal of Paleontology 83, 8993.CrossRefGoogle Scholar
Landing, E. & Westrop, S. R. 2006. Lower Ordovician faunas, stratigraphy, and sea-level history of the middle Beekmantown Group, northeastern New York. Journal of Paleontology 80, 958–80.CrossRefGoogle Scholar
Landing, E., Westrop, S. R. & Keppie, J. D. 2007. Terminal Cambrian and lowest Ordovician succession of Mexican West Gondwana: biotas and sequence stratigraphy of the Tiñu Formation. Geological Magazine 144, 128.CrossRefGoogle Scholar
Landing, E., Westrop, S. R. & Knox, L. 1996. Conodonts, stratigraphy, and relative sea-level changes of the Tribes Hill Formation (Lower Ordovician), east-central New York. Journal of Paleontology 70, 652–76.CrossRefGoogle Scholar
Landing, E., Westrop, S. R., Kröger, B. & English, A. M. 2010. Left behind—delayed extinction and a relict trilobite fauna in the Cambrian–Ordovician boundary succession, east Laurentian platform, New York. Geological Magazine, doi:10.1017/50016756810000919.CrossRefGoogle Scholar
Landing, E., Westrop, S. R. & Van Aller Hernick, L. 2003. Uppermost Cambrian–Lower Ordovician faunas and Laurentian platform sequence stratigraphy, eastern New York and Vermont. Journal of Paleontology 77, 7898.Google Scholar
Lee, D.-C. & Chatterton, B. D. E. 1999. Paleogeography and biostratigraphy of the Hystricuridae (Trilobita); a preliminary study on their evolutionary implications. Acta Universitatis Carolinae, Geologica 43, 365–8.Google Scholar
Lindström, M. 1955. Conodonts from the lowermost Ordovician strata of south-central Sweden. Geologiska Föreningens i Stockholm Förhandlingar 76, 517604.CrossRefGoogle Scholar
Lindström, M. 1964. Conodonts. Amsterdam: Elsevier Publishing Company, 196 pp.Google Scholar
Lindström, M. 1971. Lower Ordovician conodonts of Europe. In Symposium on Conodont Biostratigraphy (eds Sweet, W. C. & Bergström, S. M.), pp. 2161. Geological Society of America, Memoir no. 127.Google Scholar
Loch, J. D. 2007. Trilobite biostratigraphy and correlation of the Kindblade Formation (Lower Ordovician) of Carter and Kiowa Counties, Oklahoma. Oklahoma Geological Survey Bulletin 149, 1157.Google Scholar
Löfgren, A., Repetski, J. E. & Ethington, R. L. 1999. Some trans-Iapetus connections in the Tremadocian. Bolletino della Societa Paleontologica Italiana 37, 159–73.Google Scholar
Mazzullo, S. J. 1978. Early Ordovician tidal flat sedimentation, western margin of Proto-Atlantic Ocean. Journal of Sedimentary Petrology 48, 4962.CrossRefGoogle Scholar
Miller, J. F. & Melby, J. H. 1971. Trempealeauan conodonts. In Conodonts and the Biostratigraphy of the Wisconsin Paleozoic (ed. Clark, D. L.), pp. 49. Geological and Natural History Survey, University of Wisconsin, Madison, Information Circular 19.Google Scholar
Müller, K. J. 1959. Kambrische Conodonten. Deutsche geologische Gesellschafte, Zeitschrift 111, 434–85.CrossRefGoogle Scholar
Müller, K. J. 1964. Conodonten aus dem unteren Ordovizium von Sud-korea. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 119, 93102.Google Scholar
Nielsen, A. T. 2004. Ordovician sea level changes: a Baltoscandian perspective. In The Great Ordovician Biodiversification Event (eds Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G.), pp. 8493. New York: Columbia University Press.CrossRefGoogle Scholar
North American Commission on Stratigraphic Nomenclature. 1983. North American Stratigraphic Code. American Association of Petroleum Geologists Bulletin 67, 851–75.Google Scholar
Pander, C. H. 1856. Monographie der fossilen Fische des Silurischen Systems der Russisch-Baltischen Gouvernments. Königische Akademie der Wissenschaften von St. Petersburg, 91 pp.Google Scholar
Parsons, B. P. & Clark, D. L. 1999. Conodonts and the Cambrian–Ordovician boundary in Wisconsin. Geoscience Wisconsin 17, 110.Google Scholar
Poulsen, C. 1937. On the Lower Ordovician faunas of East Greenland. Meddelelser om Grønland 119 (3), 172.Google Scholar
Raymond, P. E. 1913. A revision of the species which have been referred to the genus Bathyurus. Bulletin of the Victoria Memorial Museum 1, 5169.Google Scholar
Repetski, J. E. 1982. Conodonts from the El Paso Group (Lower Ordovician) of westernmost Texas and southern New Mexico. New Mexico Bureau of Mines & Mineral Resources, Memoir 40, 159.Google Scholar
Repetski, J. E. & Ethington, R. E. 1983. Rossodus manitouensis (Conodonta), a new Early Ordovician index fossil. Journal of Paleontology 57, 289301.Google Scholar
Rodgers, J. & Fisher, D. W. 1969. Paleozoic rocks in Washington County, New York, west of the Taconic klippe. In Guidebook for Fieldtrips in New York, Massachusetts, and Vermont (ed. Bird, J. M.), pp. 6.16.12. New England Intercollegiate Geological Conference, 61st Annual Meeting. State University of New York at Albany.Google Scholar
Ross, R. J. Jr. 1951. Stratigraphy of the Garden City Formation in northeastern Utah, and its trilobite faunas. Peabody Museum of Natural History, Yale University, Bulletin 6, 161 pp.Google Scholar
Ross, R. J. Jr., 1958. Trilobites in a pillow-lava of the Ordovician Valmy Formation, Nevada. Journal of Paleontology 32, 559–70.Google Scholar
Ross, R. J. Jr., Hintze, L. F., Ethington, R. L., Miller, J. F., Taylor, M. E., Repetski, J. E., Sprinkle, J. & Guensburg, T. E. 1997. Observed ranges of trilobites, conodonts, and echinoderms, molluscs, and brachiopods in the Ibexian Series composite stratotype section and adjacent rocks, House–Confusion Range area west-central Utah. U.S. Geological Survey Professional Paper 1579-A, 1–50.Google Scholar
Ross, C. A. & Ross, J. R. P. 1995. North American depositional sequences and correlations. In Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System (eds Cooper, J. D., Droser, M. L. & Finney, S. C.) pp. 309–13. Fullerton, California: Society of Economic Paleontologists and Mineralogists, Pacific Section.Google Scholar
Salad Hersi, O. D., Lavoie, D. & Nowlan, G. S. 2003. Reappraisal of the Beekmantown Group sedimentology and stratigraphy Montréal, southwestern Quebec: implications for understanding the depositional evolution of the Lower–Middle Ordovician of eastern Canada. Canadian Journal of Earth Sciences 40, 149–76.CrossRefGoogle Scholar
Stouge, S. 1982. Preliminary conodont biostratigraphy and correlation of Lower to Middle Ordovician carbonates of the St. George Group, Great Northern Peninsula, Newfoundland. Government of Newfoundland and Labrador, Department of Mines and Energy Report 82–3, 59 pp.Google Scholar
Taylor, J. F., Repetski, J. E & Orndorff, R. C. 1992. The Stonehenge transgression: a rapid submergence of the central Appalachian platform in the Early Ordovician. In Global Perspectives on Ordovician Geology (eds Webby, B. D. & Laurie, J. R.), p. 409–18. Rotterdam: A.A. Balkema.Google Scholar
Ulrich, E. O. & Cushing, H. P. 1910. Age and relationships of the Little Falls Dolostone (Calciferous) of the Mohawk valley, New York. New York State Museum Bulletin 140, 97140.Google Scholar
Ulrich, E. O. & Foerste, A. F. 1935. New genera of Ozarkian and Canadian cephalopods. Journal of the Scientific Laboratories of Denison University 30, 259–90.Google Scholar
Ulrich, E. O., Foerste, A. F., Miller, A. & Unklesbay, A. G. 1944. Ozarkian and Canadian cephalopods. Part III: Longicones and summary. Geological Society of America Special Paper 58, 1226.CrossRefGoogle Scholar
Van Wamel, W. A. 1974. Conodont biostratigraphy of the Upper Cambrian and Lower Ordovician of north-western Öland, south-eastern Sweden. Utrecht Micropaleontological Bulletins 10, 1126.Google Scholar
Vogdes, A. W. 1890. A bibliography of Paleozoic Crustacea from 1698 to 1890 including a list of North American species and a systematic arrangement of genera. United States Geological Survey Bulletin 63, 1177.Google Scholar
Vogdes, A. W. 1893. A classed and annotated bibliography of the Palaeozoic Crustacea 1698–1892 to which is added a catalogue of North American species. Occasional Papers of the California Academy of Sciences 4, 1412.Google Scholar
Walch, J. E. I. 1771. Die Naturgeschichte der Versteinerungen, zur Erläuterung der Knorrischen Sammlung von Merkwürdigkeiten der Natur. Dritter Theil. Nürnburg: Paul Jonathan Felstecker, 235 pp.Google Scholar
Walcott, C. D. 1886. Second contribution to the studies on the Cambrian faunas of North America. United States Geological Survey Bulletin 30, 1369.Google Scholar
Walcott, C. D. 1924. Cambrian geology and palaeontology, V. No. 2—Cambrian and Lower Ozarkian trilobites. Smithsonian Miscellaneous Collections 75 (2), 5360.Google Scholar
Weaver, J. D. 1957. Stratigraphy and structure of the Copake quadrangle, New York. Geological Society of America Bulletin 68, 725–68.CrossRefGoogle Scholar
Welby, C. W. 1961. Bedrock geology of the central Champlain valley of Vermont. Vermont Geological Survey Bulletin 14, 1296.Google Scholar
Westrop, S. R., Knox, L. A. & Landing, E. 1993. Lower Ordovician trilobites from the Tribes Hill Formation, central Mohawk valley, New York State. Canadian Journal of Earth Sciences 30, 1618–38.CrossRefGoogle Scholar
Westrop, S. R., Tremblay, J. V. & Landing, E. 1995. Declining importance of trilobites in Ordovician nearshore communities: dilution or displacement? Palaios 10, 75–9.CrossRefGoogle Scholar
Wheeler, R. R. 1941. Cambrian–Ordovician boundary in the Adirondack-border region. American Journal of Science 240, 518–24.CrossRefGoogle Scholar
Whitfield, R. P. 1886. Notice of geological investigations along the eastern shore of Lake Champlain, conducted by Seeley, Prof. H. M. and Brainerd, Prest. Ezra, of Middlebury College, with descriptions of the new fossils discovered. American Museum of Natural History Bulletin 1, 293345.Google Scholar
Whitfield, R. P. 1889. Descriptions of new species of Silurian fossils from the Calciferous sandrock of Lake Champlain and description of several new forms. American Museum of Natural History Bulletin 2, 4163.Google Scholar
Wilmarth, M. G. 1938. Lexicon of geologic names of the United States (including Alaska). U. S. Geological Survey Bulletin 896, 12396.Google Scholar