Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T08:16:01.899Z Has data issue: false hasContentIssue false

U–Pb ages and Hf isotopes of detrital zircons from pre-Devonian sequences along the southeast Yangtze: a link to the final assembly of East Gondwana

Published online by Cambridge University Press:  22 August 2018

XIAO MA
Affiliation:
School of Earth Sciences, China University of Geosciences, Wuhan 430074, China Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences Wuhan, Wuhan 430074, China
KUNGUANG YANG*
Affiliation:
School of Earth Sciences, China University of Geosciences, Wuhan 430074, China Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences Wuhan, Wuhan 430074, China
ALI POLAT
Affiliation:
Department of Earth and Environmental Sciences, University of Windsor, Windsor, ON, CanadaN9B 3P4 Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
*
Author for correspondence: yangkunguang@163.com

Abstract

The Early Palaeozoic geology of the South China Craton (SCC) is characterized by an Early Palaeozoic intracontinental orogen with folded pre-Devonian strata and migmatites, MP/MT metamorphic rocks and Silurian post-orogenic peraluminous magmatic rocks in both the Yangtze and the Cathaysia blocks. In this contribution, we present new zircon U–Pb ages and Hf isotope data for detrital zircons from the Neoproterozoic to Silurian sedimentary sequences in the southeastern Yangtze Block. Samples from Neoproterozoic rocks generally display a major peak at 900–560 Ma, whereas samples from Lower Palaeozoic rocks are characterized by several broader peaks within the age ranges 600–410 Ma, 1100–780 Ma, 1.6–1.2 Ga and 2.8–2.5 Ga. Provenance analysis indicates that the 900–630 Ma detritus in Cryogenian to Ediacaran samples was derived from the Late Neoproterozoic igneous rocks in South China that acted as an internal source. The occurrence of 620–560 Ma detritus indicates the SE Yangtze was associated with Late Neoproterozoic arc volcanism along the north margin of East Gondwana. The change of provenance resulted in the deposition of 550–520 Ma and 1.1–0.9 Ga detrital zircons in the Cambrian–Ordovician sedimentary rocks. The εHf(t) values of these detrital zircons are similar to those of zircons from NW Australia–Antarctica and South India. This change of provenance in the Cambrian can be attributed to the intracontinental subduction between South China and South Qiangtang, and the convergence of India and Australia when East Gondwana finally amalgamated.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BGMRGXP (Bureau of Geology and Mineral Resources of Guangxi Province). 1985. Regional Geology of the Guangxi Province. Beijing: Geological Publishing House, 243256 pp. (in Chinese with English abstract).Google Scholar
BGMRHNP (Bureau of Geology and Mineral Resources of Hunan Province). 1988. Regional Geology of the Hunan Province. Beijing: Geological Publishing House, 121157 pp. (in Chinese with English abstract).Google Scholar
Blichert-Toft, J., Chauvel, C. & Albarede, F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology 127, 248–60.CrossRefGoogle Scholar
Boger, S. D. & Miller, J. M. 2004. Terminal suturing of Gondwana and the onset of the Ross–Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions. Earth and Planetary Science Letters 219, 3548.CrossRefGoogle Scholar
Boger, S. D., Wilson, C. J. L. & Fanning, C. M. 2001. Early Paleozoic tectonism within the East Antarctic craton: the final suture between east and west Gondwana? Geology 29, 463–6.2.0.CO;2>CrossRefGoogle Scholar
BRMRGZP (Bureau of Geology and Mineral Resources of Guizhou Province). 1987. Regional Geology of the Guizhou Province. Beijing: Geological Publishing House, 156167 pp. (in Chinese with English abstract).Google Scholar
Burrett, C., Zaw, K., Meffre, S., Lai, C. K., Khositanont, S., Chaodumrong, P., Udchachon, M., Ekins, S. & Halpin, J. 2014. The configuration of Greater Gondwana: evidence from LA ICPMS, U-Pb geochronology of detrital zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Research 26, 3151.CrossRefGoogle Scholar
Cawood, P. A. 2005. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews 69, 249–79.CrossRefGoogle Scholar
Cawood, P. A. & Buchan, C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Science Reviews 82, 217–56.CrossRefGoogle Scholar
Cawood, P. A., Johnson, M. R. W. & Nemchin, A. A. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth and Planetary Science Letters 255, 7084.CrossRefGoogle Scholar
Cawood, P. A. & Korsch, R. J. 2008. Assembling Australia: Proterozoic building of a continent. Precambrian Research 166, 135.CrossRefGoogle Scholar
Cawood, P. A., Wang, Y., Xu, Y. & Zhao, G. 2013. Locating South China in Rodinia and Gondwana: a fragment of Greater India lithosphere? Geology 41, 903–6.CrossRefGoogle Scholar
Cawood, P. A., Zhao, G. C., Yao, J. L., Wang, W., Xu, Y. J. & Wang, Y. J. 2017. Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth-Science Reviews. doi: 10.1016/j.earscirev.2017.06.001.Google Scholar
Charvet, J. 2013. The Neoproterozoic–Early Paleozoic tectonic evolution of the South China Block: an overview. Journal of Asian Earth Sciences 74, 198209.CrossRefGoogle Scholar
Charvet, J., Shu, L. S., Faure, M., Choulet, F., Wang, B., Lu, H. F. & Le Breton, N. 2010. Structural development of the Lower Paleozoic belt of South China: genesis of an intracontinental orogen. Journal of Asian Earth Sciences 39, 309–30.CrossRefGoogle Scholar
Charvet, J., Shu, L. S., Shi, Y. S., Guo, L. Z. & Faure, M. 1996. The building of south China: collision of Yangzi and Cathaysia blocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences 13, 223–35.CrossRefGoogle Scholar
Chen, Q., Sun, M., Long, X., Zhao, G., Wang, J., Yu, Y. & Yuan, C. 2017. Provenance study for the Paleozoic sedimentary rocks from the west Yangtze Block: constraint on possible link of South China to the Gondwana supercontinent reconstruction. Precambrian Research 309, 271–89.CrossRefGoogle Scholar
Chen, Q., Sun, M., Long, X. P., Zhao, G. C. & Yuan, C. 2016. U–Pb ages and Hf isotopic record of zircons from the late Neoproterozoic and Silurian–Devonian sedimentary rocks of the western Yangtze Block: implications for its tectonic evolution and continental affinity. Gondwana Research 31, 184–99.CrossRefGoogle Scholar
Cocks, L. R. M. & Torsvik, T. H. 2013. The dynamic evolution of the Palaeozoic geography of eastern Asia. Earth-Science Reviews 117, 4079.CrossRefGoogle Scholar
Condon, D., Zhu, M. Y., Bowring, S., Wang, W., Yang, A. H. & Jin, Y. G. 2005. U-Pb ages from the neoproterozoic Doushantuo Formation, China. Science 308, 95–8.CrossRefGoogle ScholarPubMed
Cui, X. Z., Jiang, X. S., Wang, J., Wang, X. C., Zhuo, J. W., Deng, Q., Liao, S. Y., Wu, H., Jiang, Z. F. & Wei, Y. N. 2015. Mid-Neoproterozoic diabase dykes from Xide in the western Yangtze Block, South China: new evidence for continental rifting related to the breakup of Rodinia supercontinent. Precambrian Research 268, 339–56.CrossRefGoogle Scholar
Decelles, P. G., Gehrels, G. E., Quade, J., Lareau, B. & Spurlin, M. 2000. Tectonic implications of U-Pb zircon ages of the Himalayan Orogenic Belt in Nepal. Science 288, 497–9.CrossRefGoogle ScholarPubMed
Du, Q. D., Wang, Z. J., Wang, J., Qiu, Y. S., Jiang, X. S., Deng, Q. & Yang, F. 2013. Geochronology and paleoenvironment of the pre-Sturtian glacial strata: evidence from the Liantuo Formation in the Nanhua rift basin of the Yangtze Block, South China. Precambrian Research 233, 118–31.CrossRefGoogle Scholar
Duan, L., Meng, Q. R., Zhang, C. L. & Liu, X. M. 2011. Tracing the position of the South China block in Gondwana: U–Pb ages and Hf isotopes of Devonian detrital zircons. Gondwana Research 19, 141–9.CrossRefGoogle Scholar
Faure, M., Shu, L. S., Wang, B., Charvet, J., Choulet, F. & Monie, P. 2009. Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova 21, 360–8.CrossRefGoogle Scholar
Fitzsimons, I. C. W. 2000. Grenville-age basement provinces in East Antarctica: evidence for three separate collisional orogens. Geology 28, 879–82.2.0.CO;2>CrossRefGoogle Scholar
Fitzsimons, I. C. W. 2003. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds Yoshida, M., Windley, B. R. & Yoshida, M.), pp. 93130. Geological Society of London, Special Publication no. 206.Google Scholar
Gao, S., Yang, J., Zhou, L., Li, M., Hu, Z. C., Guo, J. L., Yuan, H. L., Gong, H. J., Xiao, G. Q. & Wei, J. Q. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses. American Journal of Science 311, 153–82.CrossRefGoogle Scholar
Gehrels, G. E., Decelles, P. G., Ojha, T. P. & Upreti, B. N. 2006. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya. Geological Society of America Bulletin 118, 185–98.CrossRefGoogle Scholar
Gehrels, G., Kapp, P., Decelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A. & Mcquarrie, N. 2011. Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan‐Himalayan orogen. Tectonics 30 (5), TC5016. doi: 10.1029/2011TC002868.CrossRefGoogle Scholar
Goodge, J. W., Walker, N. W. & Hansen, V. L. 1993. Neoproterozoic-Cambrian basement-involved orogenesis within the Antarctic margin of Gondwana. Geology 21, 3740.2.3.CO;2>CrossRefGoogle Scholar
Greentree, M. R., Li, Z. X., Li, X. H. & Wu, H. C. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Research 151, 79100.CrossRefGoogle Scholar
Hofmann, M., Linnemann, U., Rai, V., Becker, S., Gärtner, A. & Sagawe, A. 2011. The India and South China cratons at the margin of Rodinia – synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses. Lithos 123, 176–87.CrossRefGoogle Scholar
Hu, P. Y., Li, C., Wang, M., Xie, C. M. & Wu, Y. W. 2013. Cambrian volcanism in the Lhasa terrane, southern Tibet: record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin. Journal of Asian Earth Sciences 77, 91107.CrossRefGoogle Scholar
Hu, P. Y., Zhai, Q. G., Jahn, B. M., Wang, J., Li, C., Lee, H. Y. & Tang, S. H. 2015. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin. Lithos 220–223, 318–38.CrossRefGoogle Scholar
Hu, Z. C., Gao, S., Liu, Y. S., Hu, S. H., Diekiterc, R. & Gunther, D. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry 23, 1093–101.CrossRefGoogle Scholar
Hu, Z. C., Liu, Y. S., Gao, S., Liu, W. G., Yang, L., Zhang, W., Ting, X. R., Lin, L., Zong, K. Q., Li, M., Chen, H. H. & Zhou, L. 2012a. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry 27, 1391–9.CrossRefGoogle Scholar
Hu, Z. C., Liu, Y. S., Gao, S., Xiao, S. Q., Zhao, L. S., Gunther, D., Li, M., Zhang, W. & Zong, K. Q. 2012b. A ‘wire’ signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 78, 50–7.CrossRefGoogle Scholar
Hughes, N. C., Myrow, P. M., McKenzie, N. R., Harper, D. A. T., Bhargava, O. N., Tangri, S. K., Ghalley, K. S. & Fanning, C. M. 2011. Cambrian rocks and faunas of the Wachi La, Black Mountains, Bhutan. Geological Magazine 148, 351–79.CrossRefGoogle Scholar
Jenkins, R., Cooper, J. A. & Compston, W. 2002. Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China. Journal of the Geological Society 159, 645–58.CrossRefGoogle Scholar
Jiang, B. Y., Sinclair, H. D., Niu, Y. X. & Yu, J. H. 2014. Late Neoproterozoic-Early Paleozoic evolution of the South China Block as a retroarc thrust wedge/foreland basin system. International Journal of Earth Sciences 103, 2340.CrossRefGoogle Scholar
Jiang, G. Q., Sohl, L. E. & Christie-Blick, N. 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): paleogeographic implications. Geology 31, 917–20.CrossRefGoogle Scholar
Jiao, W. F., Wu, Y. B., Yang, S. H., Peng, M. & Wang, J. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science in China Series D: Earth Sciences 52, 1393–9.CrossRefGoogle Scholar
Ksienzyk, A. K., Jacobs, J., Boger, S. D., Košler, J., Sircombe, K. N. & Whitehouse, M. J. 2012. U–Pb ages of metamorphic monazite and detrital zircon from the Northampton Complex: evidence of two orogenic cycles in Western Australia. Precambrian Research 198, 3750.CrossRefGoogle Scholar
Lan, Z. W., Li, X. H., Zhu, M. Y., Zhang, Q. R. & Li, Q. L. 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U–Pb zircon age constraints and regional and global significance. Precambrian Research 263, 123–41.CrossRefGoogle Scholar
Li, H. B., Jia, D., Wu, L., Zhang, Y., Yin, H. W., Wei, G. Q. & Li, B. L. 2013. Detrital zircon provenance of the Lower Yangtze foreland basin deposits: constraints on the evolution of the early Palaeozoic Wuyi–Yunkai orogenic belt in South China. Geological Magazine 150, 959–74.CrossRefGoogle Scholar
Li, L. M., Lin, S. F., Xing, G. F., Jiang, Y. & He, J. 2017. First direct evidence of Pan-African orogeny associated with Gondwana Assembly in the Cathaysia Block of Southern China. Scientific Reports 7, 794.CrossRefGoogle ScholarPubMed
Li, X. H., Li, W. X., Li, Z. X., Lo, C. H., Wang, J., Ye, M. F. & Yang, Y. H. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research 174, 117–28.CrossRefGoogle Scholar
Li, X. H., Li, Z. X. & Li, W. X. 2014. Detrital zircon U–Pb age and Hf isotope constraints on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: a synthesis. Gondwana Research 25, 1202–15.CrossRefGoogle Scholar
Li, Z. X., Evans, D. A. D. & Zhang, S. 2004. A 90° spin on Rodinia: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth and Planetary Science Letters 220, 409–21.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Li, W. X. & Ding, S. J. 2008. Was Cathaysia part of Proterozoic Laurentia? – new data from Hainan Island, south China. Terra Nova 20, 154–64.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Wartho, J. A., Clark, C., Li, W. X., Zhang, C. L. & Bao, C. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure-temperature conditions. Geological Society of America Bulletin 122, 772–93.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Zhou, H. W. & Kinny, P. D. 2002. Grenvillian continental collision in south China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163–6.2.0.CO;2>CrossRefGoogle Scholar
Li, Z. X., Zhang, L. H. & Powell, C. M. 1995. South China in Rodinia: part of the missing link between Australia–East Antarctica and Laurentia? Geology 23, 407–10.2.3.CO;2>CrossRefGoogle Scholar
Lin, M. S., Peng, S. B., Jiang, X. F., Polat, A., Kusky, T., Wang, Q. & Deng, H. 2016. Geochemistry, petrogenesis and tectonic setting of Neoproterozoic mafic–ultramafic rocks from the western Jiangnan orogen, South China. Gondwana Research 35, 338–56.CrossRefGoogle Scholar
Ling, W. L., Duan, R. C., Liu, X. M., Cheng, J. P., Mao, X. W., Peng, L. H., Liu, Z. X., Yang, H. M. & Ren, B. F. 2010. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance. Chinese Science Bulletin 55, 2440–8.CrossRefGoogle Scholar
Ling, W. L., Ren, B. F., Duan, R. C., Liu, X. M., Mao, X. W., Peng, L. H., Liu, Z. X., Cheng, J. P. & Yang, H. M. 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. Chinese Science Bulletin 53, 2192–9.Google Scholar
Liu, B. J., Xu, X. S. & Xu, Q. 1995. Sequence stratigraphy and basin geodynamic of the southeastern margin of the Yangtze plate during the late Proterozoic to early Paleozoic. Lithofacies Paleogeography 5, 116.Google Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q. & Wang, D. B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51, 537–71.CrossRefGoogle Scholar
Liu, Y. S., Hu, Z. C., Gao, S., Gunther, D., Xu, J., Gao, C. G. & Chen, H. H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.CrossRefGoogle Scholar
Long, S., McQuarrie, N., Tobgay, T., Rose, C., Gehrels, G. & Grujic, D. 2011. Tectonostratigraphy of the Lesser Himalaya of Bhutan: implications for the along-strike stratigraphic continuity of the northern Indian margin. Geological Society of America Bulletin 123, 1406–26.CrossRefGoogle Scholar
Ludwig, K. R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center, 39 pp.Google Scholar
Ma, X., Yang, K. G., Li, X. G., Dai, C. G., Zhang, H. & Zhou, Q. 2016. Neoproterozoic Jiangnan Orogeny in southeast Guizhou, South China: evidence from U–Pb ages for detrital zircons from the Sibao Group and Xiajiang Group. Canadian Journal of Earth Sciences 53, 219–30.CrossRefGoogle Scholar
Martin, A. J., Decelles, P. G., Gehrels, G. E., Patchett, P. J. & Isachsen, C. 2005. Isotopic and structural constraints on the location of the Main Central thrust in the Annapurna Range, central Nepal Himalaya. Geological Society of America Bulletin 117, 926–44.CrossRefGoogle Scholar
Martin, E. L., Collins, W. J. & Kirkland, C. L. 2017. An Australian source for Pacific-Gondwanan zircons: implications for the assembly of northeastern Gondwana. Geology 45, 699702.Google Scholar
McCulloch, M. T., Rosman, K. J. R. & De Laeter, J. R. 1977. The isotopic and elemental abundance of ytterbium in meteorites and terrestrial samples. Geochimica et Cosmochimica Acta 41, 1703–7.CrossRefGoogle Scholar
McQuarrie, N., Long, S. P., Tobgay, T., Nesbit, J. N., Gehrels, G. & Ducea, M. N. 2013. Documenting basin scale, geometry and provenance through detrital geochemical data: lessons from the Neoproterozoic to Ordovician Lesser, Greater, and Tethyan Himalayan strata of Bhutan. Gondwana Research 23, 1491– 510.CrossRefGoogle Scholar
Meert, J. G. 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362, 140.CrossRefGoogle Scholar
Miller, C., Thöni, M., Frank, W., Grasemann, B., Klötzli, U., Guntli, P. & Draganits, E. 2001. The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement. Geological Magazine 138, 237–51.CrossRefGoogle Scholar
Moghadam, H. S., Li, X., Griffin, W. L., Stern, R. J., Thomsen, T. B., Meinhold, G., Aharipour, R. & O'Reilly, S. Y. 2017. Early Paleozoic tectonic reconstruction of Iran: tales from detrital zircon geochronology. Lithos 268, 87101.CrossRefGoogle Scholar
Murphy, J. B. & Nance, R. D. 1991. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. Geology 19, 469–72.2.3.CO;2>CrossRefGoogle Scholar
Myrow, P. M., Hughes, N. C., Goodge, J. W., Fanning, C. M. & Williams, I. S. 2010. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician. Geological Society of America Bulletin 122, 1660–70.CrossRefGoogle Scholar
Myrow, P. M., Hughes, N. C., Searle, M. P., Fanning, C. M., Peng, S. C. & Parcha, S. K. 2009. Stratigraphic correlation of Cambrian–Ordovician deposits along the Himalaya: implications for the age and nature of rocks in the Mount Everest region. Geological Society of America Bulletin 121, 323–32.CrossRefGoogle Scholar
Neves, S. P., Bruguier, O., Da Silva, J. M. R., Mariano, G., Da Silva Filho, A. F. & Teixeira, C. M. L. 2015. From extension to shortening: dating the onset of the Brasiliano Orogeny in eastern Borborema Province (NE Brazil). Journal of South American Earth Sciences 58, 238–56.CrossRefGoogle Scholar
Neves, S. P., Bruguier, O., Vauchez, A., Bosch, D., Da Silva, J. M. R. & Mariano, G. 2006. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): implications for western Gondwana assembly. Precambrian Research 149, 197216.CrossRefGoogle Scholar
Peng, S. C., Hughes, N. C., Heim, N. A., Sell, B. K., Zhu, X. J., Myrow, P. M. & Parcha, S. K. 2009. Cambrian trilobites from the Parahio and Zanskar valleys, Indian Himalaya. Journal of Paleontology 83, 195.CrossRefGoogle Scholar
Qiu, Y. M., Gao, S., McNaughton, N. J., Groves, D. I. & Ling, W. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28, 11–14.2.0.CO;2>CrossRefGoogle Scholar
Robinson, F. A., Foden, J. D., Collins, A. S. & Payne, J. L. 2014. Arabian Shield magmatic cycles and their relationship with Gondwana assembly: insights from zircon U–Pb and Hf isotopes. Earth and Planetary Science Letters 408, 207–25.CrossRefGoogle Scholar
Santosh, M., Hu, C., He, X., Li, S., Tsunogae, T., Shaji, E. & Indu, G. 2017. Neoproterozoic arc magmatism in the southern Madurai Block, India: subduction, relamination, continental outbuilding, and the growth of Gondwana. Gondwana Research 45, 142.CrossRefGoogle Scholar
Santosh, M., Maruyama, S., Sawaki, Y. & Meert, J. G. 2014a. The Cambrian Explosion: plume-driven birth of the second ecosystem on Earth. Gondwana Research 25, 945–65.CrossRefGoogle Scholar
Santosh, M., Tsunogae, T., Malaviarachchi, S. P. K., Zhang, Z., Ding, H., Tang, L. & Dharmapriya, P. L. 2014b. Neoproterozoic crustal evolution in Sri Lanka: insights from petrologic, geochemical and zircon U–Pb and Lu–Hf isotopic data and implications for Gondwana assembly. Precambrian Research 255, 129.CrossRefGoogle Scholar
Shu, L. S., Faure, M., Yu, J. H. & Jahn, B. M. 2011. Geochronological and geochemical features of the Cathaysia block (South China): new evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research 187, 263–76.CrossRefGoogle Scholar
Shu, L. S., Jahn, B. M., Charvet, J., Santosh, M., Wang, B., Xu, X. S. & Jiang, S. Y. 2014. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): evidence from stratigraphic, structural, geochemical and geochronological investigations. American Journal of Science 314, 154–86.CrossRefGoogle Scholar
Shu, L. S., Wang, B., Cawood, P. A., Santosh, M. & Xu, Z. Q. 2015. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China. Tectonics 34, 1600–21.CrossRefGoogle Scholar
Silva, T. R., Ferreira, V. P., Lima, M. M. C. & Sial, A. N. 2016. Two stage mantle-derived granitic rocks and the onset of the Brasiliano orogeny: evidence from Sr, Nd, and O isotopes. Lithos 264, 189200.CrossRefGoogle Scholar
Spencer, C. J., Harris, R. A. & Dorais, M. J. 2012. Depositional provenance of the Himalayan metamorphic core of Garhwal region, India: constrained by U–Pb and Hf isotopes in zircons. Gondwana Research 22, 2635.CrossRefGoogle Scholar
Torsvik, T. H. & Cocks, L. R. M. 2009. The Lower Palaeozoic palaeogeographical evolution of the northeastern and eastern peri-Gondwanan margin from Turkey to New Zealand. In Early Palaeozoic Peri-Gondwanan Terranes: Insights from Tectonics and Biogeography (ed. Bassett, M. G.), pp. 321. Geological Society of London, Special Publication no. 325.Google Scholar
Valeriano, C. D. M., Simões, L., Teixeira, W. & Heilbron, M. 2000. Southern Brasilia belt (SE Brazil): tectonic discontinuities, K–Ar data and evolution during the Neoproterozoic Brasiliano orogeny. Revista Brasileira de Geociências 30, 195–9.CrossRefGoogle Scholar
Veevers, J. J. 2004. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews 68, 1132.CrossRefGoogle Scholar
Veevers, J. J. 2007. Pan-Gondwanaland post-collisional extension marked by 650–500 Ma alkaline rocks and carbonatites and related detrital zircons: a review. Earth-Science Reviews 83, 147.CrossRefGoogle Scholar
Veevers, J. J., Belousova, E. A., Saeed, A., Sircombe, K., Cooper, A. F. & Read, S. E. 2006. Pan-Gondwanaland detrital zircons from Australia analysed for Hf-isotopes and trace elements reflect an ice-covered Antarctic provenance of 700–500 Ma age, T DM of 2.0–1.0 Ga, and alkaline affinity. Earth-Science Reviews 76, 135–74.CrossRefGoogle Scholar
Veevers, J. J. & Saeed, A. 2008. Gamburtsev Subglacial Mountains provenance of Permian–Triassic sandstones in the Prince Charles Mountains and offshore Prydz Bay: integrated U–Pb and TDM ages and host-rock affinity from detrital zircons. Gondwana Research 14, 316–42.CrossRefGoogle Scholar
Veevers, J. J. & Saeed, A. 2011. Age and composition of Antarctic bedrock reflected by detrital zircons, erratics, and recycled microfossils in the Prydz Bay–Wilkes Land–Ross Sea–Marie Byrd Land sector (70–240° E). Gondwana Research 20, 710–38.CrossRefGoogle Scholar
Veevers, J. J., Saeed, A., Belousova, E. A. & Griffin, W. L. 2005. U–Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth Science Review 68, 245–79.CrossRefGoogle Scholar
Wan, Y. S., Liu, D. Y., Xu, M. H., Zhuang, J. M., Song, B., Shi, Y. R. & Du, L. L. 2007. SHRIMP U–Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research 12, 166–83.CrossRefGoogle Scholar
Wang, J. & Li, Z. X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research 122, 141–58.CrossRefGoogle Scholar
Wang, J., Zhou, X. L., Deng, Q., Fu, X. G., Duan, T. Z. & Guo, X. M. 2015. Sedimentary successions and the onset of the Neoproterozoic Jiangnan sub-basin in the Nanhua rift, South China. International Journal of Earth Sciences 104, 521–39.CrossRefGoogle Scholar
Wang, L. J., Griffin, W. L., Yu, J. H. & O'Reilly, S. Y. 2010. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research 177, 131–44.CrossRefGoogle Scholar
Wang, L. J., Griffin, W. L., Yu, J. H. & O'Reilly, S. Y. 2013. U–Pb and Lu–Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: implications for Precambrian crustal evolution. Gondwana Research 23, 1261–72.CrossRefGoogle Scholar
Wang, L. J., Yu, J. H., Griffin, W. L. & O'Reilly, S. Y. 2012. Early crustal evolution in the western Yangtze Block: evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks. Precambrian Research 222, 368–85.CrossRefGoogle Scholar
Wang, M., Li, C. & Chao, M. X. 2016. Dating of detrital zircons from the Dabure clastic rocks: the discovery of Neoproterozoic strata in southern Qiangtang, Tibet. International Geology Review 58, 216–27.CrossRefGoogle Scholar
Wang, W., Zeng, M. F., Zhou, M. F., Zhao, J. H., Zheng, J. P. & Lan, Z. F. 2017. Age, provenance and tectonic setting of Neoproterozoic to early Paleozoic sequences in southeastern South China Block: constraints on its linkage to western Australia-East Antarctica. Precambrian Research 309, 290308.CrossRefGoogle Scholar
Wang, W. & Zhou, M. F. 2012. Sedimentary records of the Yangtze Block (South China) and their correlation with equivalent Neoproterozoic sequences on adjacent continents. Sedimentary Geology 265, 126–42.CrossRefGoogle Scholar
Wang, W., Zhou, M. F., Yan, D. P., Li, L. & Malpas, J. 2013. Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China. Precambrian Research 235, 119.CrossRefGoogle Scholar
Wang, X. L., Zhao, G. C., Zhou, J. C., Liu, Y. S. & Hu, J. 2008. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China: implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen. Gondwana Research 14, 355–67.CrossRefGoogle Scholar
Wang, X. L., Zhou, J. C., Griffin, W. L., Wang, R. C., Qiu, J. S., O Reilly, S. Y., Xu, X. S., Liu, X. M. & Zhang, G. L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Research 159, 117–31.CrossRefGoogle Scholar
Wang, X. L., Zhou, J. C., Griffin, W. L., Zhao, G. C., Yu, J. H., Qiu, J. S., Zhang, Y. J. & Xing, G. F. 2014. Geochemical zonation across a Neoproterozoic orogenic belt: isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research 242, 154–71.CrossRefGoogle Scholar
Wang, Y. J., Fan, W. M., Zhang, G. W. & Zhang, Y. H. 2013a. Phanerozoic tectonics of the South China Block: key observations and controversies. Gondwana Research 23, 1273–305.CrossRefGoogle Scholar
Wang, Y. J., Xing, X. W., Cawood, P. A., Lai, S. C., Xia, X. P., Fan, W. M., Liu, H. C. & Zhang, F. F. 2013b. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos 182–183, 6785.CrossRefGoogle Scholar
Wang, Y. J., Zhang, A. M., Cawood, P. A., Fan, W. M., Xu, J. F., Zhang, G. W. & Zhang, Y. Z. 2013c. Geochronological, geochemical and Nd–Hf–Os isotopic fingerprinting of an early Neoproterozoic arc–back-arc system in South China and its accretionary assembly along the margin of Rodinia. Precambrian Research 231, 343–71.CrossRefGoogle Scholar
Wang, Y. J., Zhang, A. M., Fan, W. M., Zhang, Y. H. & Zhang, Y. X. 2013d. Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: geochronological and geochemical evidence. Lithos 160–161, 3754.CrossRefGoogle Scholar
Wang, Y. J., Zhang, F. F., Fan, W. M., Zhang, G. W., Chen, S. Y., Cawood, P. A. & Zhang, A. M. 2010. Tectonic setting of the South China Block in the early Paleozoic: resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics 29, TC6020. doi: 10.1029/TC002750.CrossRefGoogle Scholar
Webb, A. A. 2011. Cenozoic tectonic history of the Himachal Himalaya (northwestern India) and its constraints on the formation mechanism of the Himalayan orogen. Geosphere 7, 1013–61.CrossRefGoogle Scholar
Wu, L., Jia, D., Li, H. B., Deng, F. & Li, Y. Q. 2010. Provenance of detrital zircons from the late Neoproterozoic to Ordovician sandstones of South China: implications for its continental affinity. Geological Magazine 147, 974–80.CrossRefGoogle Scholar
Xu, Y. J., Cawood, P. A., Du, Y. S., Hu, L. S., Yu, W. C., Zhu, Y. H. & Li, W. C. 2013. Linking south China to northern Australia and India on the margin of Gondwana: constraints from detrital zircon U-Pb and Hf isotopes in Cambrian strata. Tectonics 32, 1547– 58.CrossRefGoogle Scholar
Xu, Y. J., Cawood, P. A., Du, Y. S., Huang, H. W. & Wang, X. Y. 2014a. Early Paleozoic orogenesis along Gondwana's northern margin constrained by provenance data from South China. Tectonophysics 636, 4051.CrossRefGoogle Scholar
Xu, Y. J., Cawood, P. A., Du, Y. S., Zhong, Z. Q. & Hughes, N. C. 2014b. Terminal suturing of Gondwana along the southern margin of South China Craton: evidence from detrital zircon U-Pb ages and Hf isotopes in Cambrian and Ordovician strata, Hainan Island. Tectonics 33, 2490–504.CrossRefGoogle Scholar
Xu, Y. J., Du, Y. S., Cawood, P. A., Zhu, Y. H., Li, W. C. & Yu, W. C. 2012. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: response to orogenesis in South China. Sedimentary Geology 267–268, 6372.CrossRefGoogle Scholar
Yao, J. L., Shu, L. S. & Santosh, M. 2014. Neoproterozoic arc-trench system and breakup of the South China Craton: constraints from N-MORB type and arc-related mafic rocks, and anorogenic granite in the Jiangnan orogenic belt. Precambrian Research 247, 187207.CrossRefGoogle Scholar
Yao, W. H. & Li, Z. X. 2016. Tectonostratigraphic history of the Ediacaran–Silurian Nanhua foreland basin in South China. Tectonophysics 674, 3151.CrossRefGoogle Scholar
Yao, W. H., Li, Z. X. & Li, W. X. 2014a. Was there a Cambrian ocean in South China? – Insight from detrital provenance analyses. Geological Magazine 152, 184–91.CrossRefGoogle Scholar
Yao, W. H., Li, Z. X., Li, W. X., Li, X. H. & Yang, J. H. 2014b. From Rodinia to Gondwanaland: a tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China. American Journal of Science 314, 278313.CrossRefGoogle Scholar
Yao, W. H., Li, Z. X., Li, W. X., Su, L. & Yang, J. H. 2015. Detrital provenance evolution of the Ediacaran–Silurian Nanhua foreland basin, South China. Gondwana Research 28, 1449–65.CrossRefGoogle Scholar
Yu, W. C., Du, Y. S., Cawood, P. A., Xu, Y. J. & Yang, J. H. 2014. Detrital zircon evidence for the reactivation of an Early Paleozoic syn-orogenic basin along the North Gondwana margin in South China. Gondwana Research 28, 769–80.CrossRefGoogle Scholar
Yu, J. H., O Reilly, S. Y., Wang, L. J., Griffin, W. L., Zhang, M., Wang, R. C., Jiang, S. Y. & Shu, L. S. 2008. Where was South China in the Rodinia supercontinent? Precambrian Research 164, 115.CrossRefGoogle Scholar
Yu, J. H., O Reilly, S. Y., Wang, L. J., Griffin, W. L., Zhou, M. F., Zhang, M. & Shu, L. S. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: evidence from U–Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Research 181, 97114.CrossRefGoogle Scholar
Yu, J. H., O Reilly, S. Y., Zhou, M. F., Griffin, W. L. & Wang, L. J. 2012. U–Pb geochronology and Hf–Nd isotopic geochemistry of the Badu Complex, Southeastern China: implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. Precambrian Research 222, 424–49.CrossRefGoogle Scholar
Yu, J. H., Wang, L. J., O Reilly, S. Y., Griffin, W. L., Zhang, M., Li, C. Z. & Shu, L. S. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. Precambrian Research 174, 347–63.CrossRefGoogle Scholar
Zhang, A. M., Wang, Y. J., Fan, W. M., Zhang, Y. Z. & Yang, J. 2012. Earliest Neoproterozoic (ca. 1.0Ga) arc–back-arc basin nature along the northern Yunkai Domain of the Cathaysia Block: geochronological and geochemical evidence from the metabasite. Precambrian Research 220–221, 217–33.CrossRefGoogle Scholar
Zhang, A. M., Wang, Y. J., Fan, W. M., Zhang, F. F. & Zhang, Y. Z. 2011. La-ICPMS Zircon U-Pb geochronology and Hf isotopic composition of the Taoxi Migmatite (Wuping): constraints on the formation age of the Taoxi Complex and the Yunanian Event. Geotectonica et Metallogenia 35, 6472 (in Chinese with English abstract).Google Scholar
Zhang, C. L., Santosh, M., Zhu, Q. B., Chen, X. Y. & Huang, W. C. 2015. The Gondwana connection of South China: evidence from monazite and zircon geochronology in the Cathaysia Block. Gondwana Research 28, 1137–51.CrossRefGoogle Scholar
Zhang, S. H. 2004. South China's Gondwana connection in the Paleozoic: paleomagnetic evidence. Progress in Natural Science 14, 8590.CrossRefGoogle Scholar
Zhang, X. Z., Dong, Y. S., Li, C., Deng, M. R., Zhang, L. & Xu, W. 2014. Silurian high-pressure granulites from Central Qiangtang, Tibet: constraints on early Paleozoic collision along the northeastern margin of Gondwana. Earth and Planetary Science Letters 405, 3951.CrossRefGoogle Scholar
Zhao, G. C. & Cawood, P. A. 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block: implications for neoproterozoic collision-related assembly of the South China craton. American Journal of Science 299, 309–39.CrossRefGoogle Scholar
Zhao, G. C. & Cawood, P. A. 2012. Precambrian geology of China. Precambrian Research 222, 1354.CrossRefGoogle Scholar
Zhao, J. H., Zhou, M. F., Yan, D. P., Zheng, J. P. & Li, J. W. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology 39, 299302.CrossRefGoogle Scholar
Zhao, T. Y., Feng, Q. L., Metcalfe, I., Milan, L. A., Liu, G. C., & Zhang, Z. B. 2017. Detrital zircon U-Pb-Hf isotopes and provenance of Late Neoproterozoic and Early Paleozoic sediments of the Simao and Baoshan blocks, SW China: implications for Proto-Tethys and Paleo-Tethys evolution and Gondwana reconstruction. Gondwana Research 51, 193208.CrossRefGoogle Scholar
Zhao, X. F., Zhou, M. F., Li, J. W., Sun, M., Gao, J. F., Sun, W. H. & Yang, J. H. 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: implications for tectonic evolution of the Yangtze Block. Precambrian Research 182, 5769.CrossRefGoogle Scholar
Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., Zhang, M., Pearson, N. & Pan, Y. M. 2006. Widespread Archean basement beneath the Yangtze craton. Geology 34, 417–20.CrossRefGoogle Scholar
Zhou, J. C., Wang, X. L. & Qiu, J. S. 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: coeval arc magmatism and sedimentation. Precambrian Research 170, 2742.CrossRefGoogle Scholar
Zhou, J. L., Rasoamalala, V., Razoeliarimalala, M., Ralison, B. & Luo, Z. H. 2015. Age and geochemistry of Early Cambrian post-collisional granites from the Ambatondrazaka area in east-central Madagascar. Journal of African Earth Sciences 106, 7586.CrossRefGoogle Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y., Dilek, Y. & Mo, X. X. 2011. Lhasa terrane in southern tibet came from Australia. Geology 39, 727730.CrossRefGoogle Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y., Wang, Q., Ji, W. H., Dong, G. C., Sui, Q. L., Liu, Y. S., Yuan, H. L. & Mo, X. X. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology 328, 290308.CrossRefGoogle Scholar
Supplementary material: File

Ma et al. supplementary material

Table A1

Download Ma et al. supplementary material(File)
File 191 KB
Supplementary material: File

Ma et al. supplementary material

Table A2

Download Ma et al. supplementary material(File)
File 44 KB