Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T15:54:35.726Z Has data issue: false hasContentIssue false

U–Pb zircon dating and Sr–Nd–Hf isotopic evidence to support a juvenile origin of the ~ 634 Ma El Shalul granitic gneiss dome, Arabian–Nubian Shield

Published online by Cambridge University Press:  16 December 2011

K. ALI
Affiliation:
Geosciences Department, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080USA Department of Mineral Resources and Rocks, Faculty of Earth Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
A. ANDRESEN*
Affiliation:
Department of Geosciences, P. O. Box 1047, University of Oslo, Blindern, O316 Oslo, Norway
W. I. MANTON
Affiliation:
Geosciences Department, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080USA
R. J. STERN
Affiliation:
Geosciences Department, University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080USA
S. A. OMAR
Affiliation:
Nuclear Materials Authority, P. O. Box 530, El Maadi, Kattamyia, Egypt
A. E. MAURICE
Affiliation:
Geology Department, Faculty of Earth Science, Beni Suef University, 62517 Beni Suef, Egypt
*
Author for correspondence: arild.andresen@geo.uio.no

Abstract

The calc-alkaline, gneissic El Shalul granite is the westernmost gneiss dome or core complex within the Arabian–Nubian Shield. Previous studies have indicated that it represents either a window into the underlying pre-Neoproterozoic Sahara metacraton or a melt derived from the metacraton. U–Pb LA-ICP-MS dating of magmatic zircons from two samples of the variably foliated El Shalul pluton gives ages of 637 ± 5 Ma and 630 ± 6 Ma, excluding it from representing exhumed cratonic rocks. The ages are, however, indistinguishable from the age of the Um Ba'anib pluton, constituting the core of the Meatiq Gneiss Dome, as well as several other plutons in the Eastern Desert, indicating an important magmatic pulse in the Arabian–Nubian Shield in Late Cryogenian time. Major and trace element data indicate a within-plate setting. Bulk rock Nd-isotope and Hf-isotope data on zircons from the El Shalul pluton indicate derivation of the primary melt from a relatively juvenile source, either the lower crust of a mid-Neoproterozoic volcanic arc or as a result of fractionation of a mantle-derived mafic melt. Sm–Nd bulk rock isotopic data indicate a model age of c. 720 Ma for the protolith from which the melt was derived. Time-corrected Hf-isotope data obtained on the magmatic zircons indicate that the bulk of the source rock was extracted from the mantle around 810 Ma.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdeen, M. M. & Greiling, R. O. 2005. A quantitative structural study of Late Pan-African compressional deformation in the Central Eastern Desert (Egypt) during Gondwana assembly. Gondwana Research 8, 457–71.CrossRefGoogle Scholar
Abdelsalam, M. G., Liégeois, J. P. & Stern, R. J. 2002. The Sahara metacraton. Journal of African Earth Sciences 34, 109–17.CrossRefGoogle Scholar
Akaad, M. K. & Noweir, A. 1980. Geology and lithostratigraphy of the Arabian Desert orogenic belt of Egypt between Lat. 25° 35′ and 26° 30′. Institute of Applied Geology, King Abdul Aziz University, Jeddah Bulletin 3 (4), 127–35.Google Scholar
Ali, K. A., Stern, R. J., Manton, W. I., Kimura, J.-I. & Khamees, H. A. 2009. Geochemistry, Nd isotopes and U-Pb SHRIMP zircon dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt: new insights into the ~750 Ma crust-forming event. Precambrian Research 171, 122.Google Scholar
Andersen, T., Andersson, U. B., Graham, S., Åberg, G. & Simonsen, S. L. 2009. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Paleoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of the Geological Society, London 166, 233–47.CrossRefGoogle Scholar
Andersen, T., Griffin, W. L. & Pearson, N. J. 2002. Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. Journal of Petrology 43, 1725–47.Google Scholar
Andresen, A., Augland, L. E., Boghdady, G. Y., Lundmark, A. M., Elnady, O. M., Hassan, M. A. & Abu El-Rus, M. A. 2010. Structural constraints on the evolution of the Meatiq Gneiss Dome (Egypt), East-African Orogen. Journal of African Earth Sciences 57, 413–22.CrossRefGoogle Scholar
Andresen, A., El-Rus, M. A. A., Myhre, P. I. & Boghdady, G. Y. 2009. U-Pb TIMS age constraints on the evolution of the Neoproterozoic Meatiq Gneiss Dome, Eastern Desert, Egypt. International Journal of Earth Sciences 98, 481–97.CrossRefGoogle Scholar
Augland, L. E., Andresen, A. & Boghdady, G. Y. 2011. U–Pb ID-TIMS dating of igneous and metaigneous rocks from the El-Sibai area: time constraints on the tectonic evolution of the Central Eastern Desert, Egypt. International Journal of Earth Sciences, published online 27 March 2011. doi.10.1007/s0053-011-0653-3.Google Scholar
Blichert-Toft, J. & Albarède, F. 1997. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters 148, 243–58.CrossRefGoogle Scholar
Bregar, M., Bauernhofer, A., Pelz, K., Kloetzli, U., Fritz, H. & Neumayr, P. 2002. A late Neoproterozoic magmatic core complex in the Eastern Desert of Egypt: emplacement of granitoids in a wrench-tectonic setting. Precambrian Research 118, 5982.CrossRefGoogle Scholar
Breitkreuz, C., Eliwa, H., Khalaf, I., El Gameel, K., Buhler, B., Sergeev, S., Larioniv, S. & Murata, M. 2010. Neoproterozoic SHRIMP U-Pb zircon ages of silica-rich Dokhan Volcanics in the North Eastern Desert, Egypt. Precambrian Research 182, 163–74.Google Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. 2003. Atlas of zircon textures. In Zircon (eds Hanchar, J. M. & P. Hoskin, W. O.), pp. 469–500. Reviews in Mineralogy and Geochemistry vol. 53.Google Scholar
DePaolo, D. J. 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291, 193–6.CrossRefGoogle Scholar
DePaolo, D. J. 1983. The mean life of continents: estimates of continental recycling rates from Nd and Hf isotopic data and implications for mantle structure. Geophysical Research Letters 10, 705–8.CrossRefGoogle Scholar
Dickin, A. P. 2005. Radiogenic Isotope Geology. Cambridge: Cambridge University Press, 492 pp.Google Scholar
El-Gaby, S., El-Nady, O. & Khudeir, A. A. 1984 .Tectonic evolution of the basement complex in the Central Eastern Desert of Egypt. Geologische Rundschau 73, 1019–36.CrossRefGoogle Scholar
El-Gaby, S., List, F. K. & Tehrani, R. 1988. Geology, evolution and metallogenesis of the Pan-African Belt in Egypt. In The Pan-African Belt of Northeast Africa and Adjacent Areas (eds El-Gaby, S. & Greiling, R. O.), pp. 1768. Wiesbaden, Germany: Vieweg & Sohn.Google Scholar
El-Gaby, S., List, F. K. & Tehrani, R. 1990. The basement complex of the Eastern Desert and Sinai. In The Geology of Egypt (ed. Said, R.), pp. 175–84. Rotterdam: Balkema.Google Scholar
El-Ramly, M. F., Greiling, R. O., Kröner, A. & Rashwan, A. A. 1984. On the tectonic evolution of the Wadi Hafafit area and environs, Eastern Desert of Egypt. Faculty of Science, King Abdul Aziz University, Jeddah Bulletin 6, 113–26.Google Scholar
Goldstein, S. L., O'Nions, R. K., Keith, R. & Hamilton, P. J. 1984. A Sm-Nd isotopic study of atmospheric dust and particulates from major river systems. Earth and Planetary Science Letters 70, 221–36.Google Scholar
Greenberg, J. K. 1981. Characteristics and origin of Egyptian younger granites. Geological Society of America Bulletin 92, 748840.Google Scholar
Greiling, R. O., Abdeen, M. M., Dardir, A. A., El Akhal, H., El Ramly, M. F., Kamal El Din, G. M., Osman, A. F., Rashwan, A. A., Rice, A. H. N. & Sadek, M. F. 1994. A structural synthesis of the Proterozoic Arabian-Nubian Shield in Egypt. Geologische Rundschau 83, 484501.Google Scholar
Greiling, R. O., Kröner, A. & El-Ramly, M. F. 1984. Structural interference patterns and their origin in the Pan-African basement of the southeastern Desert of Egypt. In Precambrian Tectonics Illustrated (eds Kröner, A. & Greiling, R. O.), pp. 401–12. Stuttgart, Germany: Schweitzerbart'sche Verlagsbuchhandlung.Google Scholar
Greiling, R. O., Kröner, A., El-Ramly, M. F. & Rashwan, A. A. 1988. Structural relationship between the southern and central parts of the Eastern desert of Egypt: details of a fold and thrust belt. In The Pan-African Belt of Northeast Africa and Adjacent Areas (eds El-Gaby, S. & Greiling, R. O.), pp. 121–46. Weisbaden, Germany: Vieweg & Sohn.Google Scholar
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., Van Achterbergh, E., O'Reilly, S. Y. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.Google Scholar
Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X. & Zhou, X. 2002. Zircons chemistry and magma genesis in SE China: in situ analysis of Hf isotopes, Pingtan and Tonglu igneous complexes. Lithos 61, 237–69.CrossRefGoogle Scholar
Hamimi, Z., El Amawy, M. A. & Wetait, M. 1994. Geology and structural evolution of El Shalul Dome and environs, Central Eastern Desert, Egypt. Egyptian Journal of Geology 38–2, 575959.Google Scholar
Hargrove, U. S., Stern, R. J., Kimura, J.-L., Manton, W. I. & Johnson, P. R. 2006. How juvenile is the Arabian-Nubian Shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircons in the Bi'r Umq suture zone, Saudi Arabia. Earth and Planetary Science Letters 252, 308–26.CrossRefGoogle Scholar
Heinonen, A. P., Andersen, T. & Rëmö, O. T. 2010. Re-evaluation of rapakivi petrogenesis: source constraints from Hf isotope composition and zircon in the rapakivi granites and associated mafic rocks of southern Finland. Journal of Petrology 51, 1687–709.CrossRefGoogle Scholar
Irvine, T. N. & Baragar, W. R. A. 1971. Guide to chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.Google Scholar
Khudeir, A. A., Abu El-Rus, M. A., El-Gaby, S., El-Nady, O. & Bishara, W.W. 2008. Sr-Nd isotopes and geochemistry of the infrastructural rocks in the Meatiq and Hafafit core complexes, Eastern Desert, Egypt: evidence for involvement of pre-Neoproterozoic crust in the growth of Arabian-Nubian shield. Island Arc 17, 90108.CrossRefGoogle Scholar
Khudeir, A. A., El Gaby, S., Kamal El-Din, G. M., Asran, A. A. M. H. & Greiling, R. O. 1995. The pre-Pan African deformed granite cycle of the Gabal El-Sibai swell, Eastern Desert, Egypt. Journal of African Earth Sciences 21, 395406.CrossRefGoogle Scholar
Kröner, A., Greiling, R., Reischmann, T., Hussein, I. M., Stern, R. J., Dürr, S., Krüger, J. & Zimmer, M. 1987. Pan-African crustal evolution in the Nubian segment of Northeast Africa. In Proterozoic Lithospheric Evolution (ed. Kröner, A.), pp. 235–57. American Geophysical Union, Geodynamics Series vol. 17.CrossRefGoogle Scholar
Kröner, A., Krüger, J. & Rashwan, A. A. A. 1994. Age and tectonic setting of granitoid gneisses in the Eastern Desert of Egypt and southwest Sinai. Geologische Rundschau 83, 502–13.Google Scholar
Küster, D., Liégeois, J.-P., Matukov, D., Sergeev, S. & Lucassen, F. 2008. Zircon geochronology and Sr, Nd, Pb isotope geochemistry of granitoids from Bayuad Desert and Sabaloka (Sudan): evidence for a Bayudian event (920–900 Ma) preceding the Pan-African orogenic cycle (860–590 Ma) at the eastern boundary of the Saharan Metacraton. Precambrian Research 164, 1639.Google Scholar
Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M. J., Sabine, P. A., Schmidt, R., Sorensen, H., Streckeisen, A., Wooley, A. R. & Zanetti, B. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell, 193 pp.Google Scholar
Liégeois, J. P. & Stern, R. J. 2010. Sr-Nd isotopes and the geochemistry of granite-gneiss complexes from the Meatiq and Hafafit domes, Eastern Desert, Egypt: no evidence for pre-Neoproterozoic crust. Journal of African Earth Sciences 57, 3140.CrossRefGoogle Scholar
Ludwig, K. R. 1998. On the treatment of concordant uranium–lead ages. Geochimica et Cosmochimica Acta 62, 665–76.Google Scholar
Ludwig, K. R. 2003. User's Handbook for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication no. 4, 70 pp.Google Scholar
Lugmair, G. W. & Marti, K. 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.CrossRefGoogle Scholar
Lundmark, A. M., Andresen, A., Augland, L. E. & Andersen, T. 2009. The Neoproterozoic East African Orogen viewed from the Eastern Desert, Egypt: an ID-TIMS age and in situ LA-ICPMS Hf isotopic study. In NGF Abstracts and Proceedings of the Norwegian Geological Society 2009, vol. 1 (ed. Nakrem, H. A.), p. 67. Trondheim: Norsk Geologisk Forening.Google Scholar
Lundmark, A. M., Andresen, A., Hassan, M. A., Augland, L. E., Abu El-Rus, M. A. & Boghdady, G. Y. 2011. Repeated magmatic pulses in the East African Orogen of Central Eastern Desert, Egypt: an old idea supported by new evidence. Gondwana Research, published online 1 October 2011. doi.10.1016/j.gr.2011.08.017.Google Scholar
Moghazi, A. M. 2002. Petrology and geochemistry of Pan-African granitoids, Kab Amiri area, Egypt – implications for tectonomagmatic stages in the Nubian Shield evolution. Mineralogy and Petrology 75, 4167.CrossRefGoogle Scholar
Moussa, E. M. M., Stern, R. J., Manton, E. I. & Ali, K. A. 2008. SHRIMP zircon dating and Sm/Nd isotopic investigations of Neoproterozoic granitoids, Eastern Desert Egypt. Precambrian Research 160, 341–56.Google Scholar
Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta 38, 757–75.Google Scholar
Nelson, B. K. & DePaolo, D. J. 1985. Rapid production of continental crust 1.7 to 1.9 b.y. ago: Nd isotopic evidence from the basement of the North American midcontinent. Geological Society of America Bulletin 96, 746–54.Google Scholar
Osman, A. F. 1996. Structural, geological and geochemical studies of the Pan-African basement rocks, Wadi Zeidun Area, Central Eastern Desert, Egypt. Scientific Series of the International Bureau/Forschungsztrum Julich GmbH 39, 262 pp.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.Google Scholar
Pease, V., Shalaby, E., Axelsson, E., Whitehouse, M. H. & Om, M. J. 2010. Neoproterozoic Wadi Nabi intrusive complex, Central Eastern Desert. Saudi Geological Survey, Technical Report SGS-TR-2010-2, 56–60.Google Scholar
Peccerillo, R. & Taylor, S. R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology 58, 6381.Google Scholar
Ragab, A. I., El Kalioubi, B. & El Alfy, Z. 1983. Petrotectonic assemblages and crustal evolution of the area north of Abu El Tiyur, Central Eastern Desert, Egypt. Middle East Research Center, Ain Sham University, Earth Science Series 7, 16.Google Scholar
Ries, A. C., Shackelton, R. M., Graham, R. H. & Fitches, W. R. 1983. Pan-African structure, ophiolites and melanges in the Eastern Desert of Egypt: a traverse at 26°N. Journal of the Geological Society, London 140, 7595.Google Scholar
Rosa, D. R. N., Finch, A. A., Andersen, T. & Inverno, C. M. C. 2009. U–Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt. Mineralogy and Petrology 95, 4769.Google Scholar
Søderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–24.Google Scholar
Stacey, J. S. & Agar, R. A. 1985. U-Pb isotopic evidence for the accretion of a continental micro plate in the Zalm region of the Saudi Arabian Shield. Journal of the Geological Society, London 142, 1189–203.Google Scholar
Stern, R. J. 1994. Arc assembly and continental collision in the Neoproterozoic East Africa Orogen: implications for the consolidation of Gondwanaland. Annual Reviews of Earth and Planetary Science 22, 319–51.Google Scholar
Stern, R. J. 2002. Crustal evolution in the East African Orogen: a neodymium isotopic perspective. Journal of African Earth Sciences 34, 309–117.CrossRefGoogle Scholar
Stern, R., Avigad, D., Miller, N. R. & Beyth, M. 2006. Evidence for the Snowball Earth Hypothesis in the Arabian-Nubian Shield and the East African Orogen. Journal of African Earth Sciences 44, 120.CrossRefGoogle Scholar
Stern, R. J., Gottfried, D. & Hedge, C. E. 1984. Late Precambrian rifting and crustal evolution in the Northeastern Desert of Egypt. Geology 12, 168–71.Google Scholar
Stern, R. J. & Hedge, C. E. 1985. Geochronological constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. American Journal of Science 285, 97127.Google Scholar
Stoeser, D. & Frost, C. 2006. Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chemical Geology 226, 163–88.Google Scholar
Sultan, M., Tucker, R. D., El Alfy, Z., Attia, R. & Ragab, A. G. 1994. U-Pb (zircon) ages from the gneissic terrane west of the Nile southern Egypt. Geologische Rundschau 83, 514–22.Google Scholar
Vervoort, J. & Blichert-Toft, J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta 63, 533–56.CrossRefGoogle Scholar
Whalen, J. B., Currie, K. L. & Chapell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.CrossRefGoogle Scholar
Whitehouse, M. J., Stoeser, D. B. & Stacey, J. S. 2001 a. The Khida Terrane – geochronological and isotopic evidence for Paleoproterozoic and Archean crust in the Eastern Arabian shield. Gondwana Research 4, 200–2.Google Scholar
Whitehouse, M. J., Windley, B. F., Ba-Tatt, M. A., Fanning, C. M. & Rex, D. C. 1998. Crustal evolution and terrane correlation in the eastern Arabian Shield, Yemen: geochronological constraints. Journal of the Geological Society, London 155, 281–95.CrossRefGoogle Scholar
Whitehouse, M. J., Windley, B. F., Stoeser, D. B., Al-Khirbash, S., Ba-Bttat, M. A. O. & Haider, A. 2001 b. Precambrian basement character of Yemen and correlations with Saudi Arabia and Somalia. Precambrian Research 105, 357–69.Google Scholar
Wilde, S. A. & Youssef, K. 2000. Significance of SHRIMP U-Pb dating of the Imperial Porphyry and associated Dokhan Volcanics, Gabal Dokhan, North Eastern Desert, Egypt. Journal of African Earth Sciences 31, 403–13.CrossRefGoogle Scholar
Wilde, S. A. & Youssef, K. 2002. A re-evaluation of the origin and setting of the Late Precambrian Hammamat Group based on SHRIMP U-Pb dating of detrital zircons from Gebel Umm Tawat, North Eastern Desert, Egypt. Journal of the Geological Society, London 159, 595604.CrossRefGoogle Scholar