Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T10:50:19.318Z Has data issue: false hasContentIssue false

What ‘anorogenic’ igneous rocks can tell us about the chemical composition of the upper mantle: case studies from the circum-Mediterranean area

Published online by Cambridge University Press:  07 September 2010

MICHELE LUSTRINO*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Roma La Sapienza, P.le A. Moro, 5, 00185 Roma, Italy Istituto di Geologia Ambientale e Geoingegneria (IGAG) – CNR. c/oDipartimento di Scienze della Terra, Università degli Studi di Roma La Sapienza, Italy

Abstract

The composition of the upper mantle bounded by the Canaries, Eastern Anatolia, Libya and Poland is indirectly investigated by means of the chemical composition of igneous rocks with ‘anorogenic’ geochemical characteristics emplaced during the Cenozoic. The relatively homogeneous composition of these products in terms of incompatible trace-element content and Sr–Nd–Pb isotopic composition is unexpected, considering the variable lithospheric structure of this large area and the different tectono-thermal histories of the various districts. In order to reconcile the geochemical characteristics with a statistical sampling model, it would be necessary to propose volumes of the enriched regions much lower than the sampling volumes for each volcano (that is, less than 10 cubic metres), or alternatively, efficient magma blending from larger areas. The data are consistent with a relatively well-stirred and mixed sub-lithospheric upper mantle, in the solid state, which is also hard to understand. This contrasts with the situation under oceans where magma blending from diverse sources and sampling theory can explain the compositional statistics.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C. J. & Turcotte, D. L. 1986. Implications for a two component marble-cake mantle. Nature 323, 123–7.CrossRefGoogle Scholar
Anderson, D. L. 1998. The scales of mantle convection. Tectonophysics 284, 117.CrossRefGoogle Scholar
Anderson, D. L. 2006. Speculations on the nature and cause of mantle heterogeneity. Tectonophysics 416, 722.CrossRefGoogle Scholar
Anderson, D. L. 2007. The New Theory of the Earth. Cambridge University Press, 374 pp.CrossRefGoogle Scholar
Avanzinelli, A., Lustrino, M., Mattei, M., Melluso, L. & Conticelli, S. 2009. Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113, 213–27.CrossRefGoogle Scholar
Bell, K., Castorina, F., Lavecchia, G., Rosatelli, G. & Stoppa, F. 2004. Is there a mantle plume below Italy? EOS Transactions AGU, 85 (50), doi:10.1029/2004EO500002.CrossRefGoogle Scholar
Bercovici, D. & Karato, S.-I. 2003. Whole-mantle convection and the transition-zone water filter. Nature 425, 3944.CrossRefGoogle ScholarPubMed
Cadoux, A., Blichert-Toft, J., Pinti, D. L. & Albarède, F. 2007. A unique lower mantle source for Southern Italy volcanics. Earth and Planetary Science Letters 259, 227–38.CrossRefGoogle Scholar
Carminati, E. & Doglioni, C. 2004. Europe–Mediterranean tectonics. In Encyclopedia of Geology (eds Selley, R. C., Cocks, L. R. M. & Plimer, I. R.), pp. 135–46. Elsevier.Google Scholar
Cebrià, J. M. & Lopez-Ruiz, J. 1995. Alkali basalts and leucitites in an extensional intracontinental plate setting: the late Cenozoic Calatrava Volcanic Province (central Spain). Lithos 35, 2756.CrossRefGoogle Scholar
Conticelli, S., Guarnieri, L., Farinelli, A., Mattei, M., Avanzinelli, R., Bianchini, G., Boari, E., Tommasini, S., Tiepolo, M., Prelevic, D. & Venturelli, G. 2009. Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107, 6892.CrossRefGoogle Scholar
DePaolo, D. J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189202.CrossRefGoogle Scholar
Duggen, S., Hoernle, K., Hauff, F., Klugel, A., Bouabdellah, M. & Thirlwall, M. F. 2009. Flow of Canary mantle plume material through a subcontinental lithospheric corridor beneath Africa to the Mediterranean. Geology 37, 283–6.CrossRefGoogle Scholar
Frezzotti, M. L., Peccerillo, A. & Panza, G. 2009. carbonate metasomatism and CO2 lithosphere–asthenosphere degassing beneath the Western Mediterranean: an integrated model arising from petrological and geophysical data. Chemical Geology 262, 108–20.CrossRefGoogle Scholar
Goes, S., Spakman, W. & Bijwaard, H. 1999. A lower mantle source for Central European volcanism. Science 286, 1928–31.CrossRefGoogle ScholarPubMed
Granet, M., Wilson, M. & Achauer, U. 1995. Imaging a mantle plume beneath the French Massif Central. Earth and Planetary Science Letters 136, 281–96.CrossRefGoogle Scholar
Harangi, S., Downes, H. & Seghedi, I. 2006. Tertiary–Quaternary subduction processes and related magmatism in the Alpine–Mediterranean region. In European Lithosphere Dynamics (eds Gee, D. & Stephenson, R.), pp. 167–90. Geological Society of London, Memoir no. 32.Google Scholar
Harangi, S., Tonarini, S., Vaselli, O & Manetti, P. 2003. Geochemistry and petrogenesis of Early Cretaceous alkaline igneous rocks in Central Europe: implications for a long-lived EAR-type mantle component beneath Europe. Acta Geologica Hungarica 46, 7794.CrossRefGoogle Scholar
Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. 1992. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–20.CrossRefGoogle ScholarPubMed
Hirschmann, M. 2000. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochemistry, Geophysics, Geosystems 1 (10), doi:10.1029/2000GC000070.CrossRefGoogle Scholar
Hoernle, K., Zhang, Y. S. & Graham, D. 1995. Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374, 34–9.CrossRefGoogle Scholar
Hofmann, A. W. 1997. Mantle geochemistry. The message from oceanic volcanism. Nature 385, 219–29.CrossRefGoogle Scholar
Hofmann, A. W. 2003. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In Treatise on Geochemistry: The mantle and the core (eds Carlson, R. W., Holland, H. D. & Turekian, K. K.), pp. 61101. New York: Elsevier.Google Scholar
Hofmann, A. W. & White, W. M. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters 57, 421–36.CrossRefGoogle Scholar
Humphreys, E. R. & Niu, Y. 2009. On the composition of the ocean island basalts (OIB): the effects of lithospheric thickness variation and mantle metasomatism. Lithos 112, 118–36.CrossRefGoogle Scholar
Kellogg, J. B., Jacobsen, S. B. & O'Connell, R. J. 2002. Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth and Planetary Science Letters 204, 183202.CrossRefGoogle Scholar
Khazan, Y. & Fialko, Y. 2005. Why do kimberlites from different provinces have similar trace element patterns? Geochemistry, Geophysics, Geosystems 6, 10, doi: 10.1029/2005GC000919.CrossRefGoogle Scholar
Lustrino, M. 2000. Phanerozoic geodynamic evolution of the circum-Italian realm. International Geology Review 42, 724–57.CrossRefGoogle Scholar
Lustrino, M. & Carminati, E. 2007. Phantom plumes in Europe and the circum-Mediterranean region. In The Origins of Melting Anomalies: Plumes, Plates and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.), pp. 723–46. Geological Society of America, Special Paper no. 430.CrossRefGoogle Scholar
Lustrino, M., Duggen, S. & Rosenberg, C. L. In press. The central-western Mediterranean: anomalous igneous activity in an anomalous collisional setting. Earth-Science Reviews.Google Scholar
Lustrino, M., Keskin, M., Mattioli, M., Lebedev, V. A., Chugaev, A., Sharkov, E. & Kavak, O. 2010. Early activity of the largest Cenozoic shield volcano in the circum-Mediterranean area: Mt. Karacadağ, SE Turkey. European Journal of Mineralogy 22, 343–62.CrossRefGoogle Scholar
Lustrino, M., Mascia, E. & Lustrino, B. 2004. EMI, EMII, EMIIE, EMIII, HIMU, DMM, et al. What do they really mean? 32nd IGC-Florence, 2004, Abstract volume, pt. 1, Abstract no. 170–23.Google Scholar
Lustrino, M., Melluso, L. & Morra, V. 2000. The role of lower continental crust and lithospheric mantle in the genesis of Plio-Pleistocene volcanic rocks from Sardinia (Italy). Earth and Planetary Science Letters 180, 259–70.CrossRefGoogle Scholar
Lustrino, M., Melluso, L. & Morra, V. 2007. The geochemical peculiarity of “Plio-Quaternary” volcanic rocks of Sardinia in the circum-Mediterranean Cenozoic Igneous Province. In Cenozoic Volcanism in the Mediterranean Area (eds Beccaluva, L., Bianchini, G. & Wilson, M.), pp. 277301. Geological Society of America, Special Paper no. 418.Google Scholar
Lustrino, M., Morra, V., Fedele, L. & Franciosi, L. 2009. The beginning of the Apennine subduction system in central–western Mediterranean: constraints from Cenozoic “orogenic” magmatic activity of Sardinia (Italy). Tectonics 28, TC5016, doi:10.1029/2008TC002419.CrossRefGoogle Scholar
Lustrino, M. & Wilson, M. 2007. The Circum-Mediterranean Anorogenic Cenozoic Igneous Province. Earth-Science Reviews 81, 165.CrossRefGoogle Scholar
Macera, P., Gasperini, D., Piromallo, C., Blichert-Toft, J., Bosh, D., del Moro, A. & Martin, S. 2003. Geodynamic implications of deep mantle upwelling in the source of Tertiary volcanics from the Veneto region (south-eastern Alps). Journal of Geodynamics 36, 563–90.CrossRefGoogle Scholar
Maclennan, J. 2008. Lead isotope variability in olivine-hosted melt inclusions from Iceland. Geochimica et Cosmochimica Acta 72, 4159–76.CrossRefGoogle Scholar
McKenzie, D. & Bickle, M. J. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology 29, 625–79.CrossRefGoogle Scholar
Meibom, A. & Anderson, D. L. 2003. The statistical upper mantle assemblage. Earth and Planetary Science Letters 217, 123–39.CrossRefGoogle Scholar
Mertes, H. & Schmincke, H. U. 1985. Mafic potassic lavas of the Quaternary West Eifel volcanic field. Contribution to Mineralogy and Petrology 89, 330–45.CrossRefGoogle Scholar
Morgan, J. P. & Shearer, P. M. 1993. Seismic constraints on mantle flow and topography of the 660-km discontinuity: evidence for whole-mantle convection. Nature 365, 506–11.CrossRefGoogle Scholar
Navon, O. & Stolper, E. 1987. Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. Journal of Geology 95, 285307.CrossRefGoogle Scholar
Niu, Y. & O'Hara, M. J. 2003. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research 108, 2209, doi:10.1029/2002JB002048.CrossRefGoogle Scholar
O'Reilly, S., Zhang, M., Griffin, W. L., Begg, G. & Hronsky, J. 2009. Ultradeep continental roots and their oceanic remnants: a solution to the geochemical “mantle reservoir” problem? Lithos 112, 1043–54.CrossRefGoogle Scholar
O'Reilly, S. 1989. Australian xenolith types, distribution and transport. In Intraplate volcanism in eastern Australia and New Zealand (ed. Johnson, R. W.), pp. 249–53. Cambridge University Press.Google Scholar
Oyarzun, R. M., Doblas, M., Lopez-Ruiz, J. & Cebrià, J. M. 1997. Opening of the Central Atlantic and asymmetric mantle upwelling phenomena: implications for long-lived magmatism in Western North Africa and Europe. Geology 25, 727–30.2.3.CO;2>CrossRefGoogle Scholar
Peccerillo, A. 2005. Plio-Quaternary volcanism in Italy: petrology, geochemistry and geodynamics. Berlin: Springer-Verlag, 365 pp.Google Scholar
Perugini, D., Poli, G., Christofides, G., Eleftheriadis, G., Koroneos, A. & Soldatos, T. 2004. Mantle-derived and crustal melts dichotomy in northern Greece: spatiotemporal and geodynamic implications. Geological Journal 39, 6380.CrossRefGoogle Scholar
Pilet, S., Baker, M. B. & Stolper, E. M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science 20, 916–19.CrossRefGoogle Scholar
Piromallo, C., Gasperini, D., Macera, P. & Faccenna, C. 2008. A late Cretaceous contamination episode of the European–Mediterranean mantle. Earth and Planetary Science Letters 268, 1527.CrossRefGoogle Scholar
Ritter, J. R. R. 2007. The seismic signature of the Eifel plume. In Mantle plumes – An interdisciplinary approach (eds Ritter, J. R. R. & Christensen, U. R.), pp. 379404. Heidelberg: Springer.CrossRefGoogle Scholar
Rubin, K. H., Sinton, J. M., Maclennan, J. & Hellebrand, E. 2009. Magmatic filtering of mantle compositions at mid-ocean ridge volcanoes. Nature Geoscience 2, 321–8.CrossRefGoogle Scholar
Saal, A. E., Hart, S. R., Shimizu, N., Hauri, E. H., Layne, G. D. & Eiler, J. M. 2005. Pb isotopic variability in melt inclusions from the EMI–EMII–HIMU mantle end-members and the role of the oceanic lithosphere. Earth and Planetary Science Letters 240, 605–20.CrossRefGoogle Scholar
Stracke, A., Hofmann, A. H. & Hart, S. R. 2005. FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems 6, Q05007, doi:10.1029/2004GC000824.CrossRefGoogle Scholar
Sun, S.-S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tackley, P. J. 2000. Mantle convection and plate tectonics: toward an integrated physical and chemical theory. Science 288, 2002–7.CrossRefGoogle ScholarPubMed
van Keken, P. E., Hauri, E. H. & Ballentine, C. J. 2002. Mantle mixing: the generation, preservation and destruction of chemical heterogeneity. Annual Review of Earth and Planetary Sciences 30, 493525.CrossRefGoogle Scholar
van Orman, J. A., Grove, T. L. & Shimizu, N. 2001. Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contributions to Mineralogy and Petrology 141, 687703.CrossRefGoogle Scholar
Warren, J. M., Shimizu, N., Sakaguchi, C., Dick, H. J. B. & Nakamura, E. 2009 An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic composition. Journal of Geophysical Research 114, B12203, doi:10.1029/2008JB006186.CrossRefGoogle Scholar
Willbold, M. & Stracke, A. In press. Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology, doi: 10.1016/j.chemgeo.2010.06.005CrossRefGoogle Scholar
Wilson, M. & Bianchini, G. 1999. Tertiary–Quaternary magmatism within the Mediterranean and surrounding regions. In The Mediterranean Basins: Tertiary extension within the Alpine Orogen (eds Durand, B., Jolivet, L., Horvath, F. & Sèranne, M.), pp. 141–68. Geological Society of London, Memoir no. 156.Google Scholar
Wilson, M. & Patterson, R. 2001. Intraplate magmatism related to shortwavelength convective instabilities in the upper mantle: evidence from the Tertiary–Quaternary volcanic province of western and central Europe: In Mantle Plumes: Their identification through time (eds Ernst, R. E. & Buchan, K. L.), pp. 3758. Geological Society of America, Special Paper no. 352.Google Scholar
Zindler, A. & Hart, S. R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Science 14, 493571.CrossRefGoogle Scholar
Supplementary material: File

Lustrino supplementary material

Appendix.xls

Download Lustrino supplementary material(File)
File 916.5 KB
Supplementary material: Image

Lustrino supplementary material

Figure 1.tif

Download Lustrino supplementary material(Image)
Image 9.8 MB
Supplementary material: Image

Lustrino supplementary material

Figure 2.tif

Download Lustrino supplementary material(Image)
Image 19 MB
Supplementary material: Image

Lustrino supplementary material

Figure 3a.tif

Download Lustrino supplementary material(Image)
Image 16.6 MB
Supplementary material: Image

Lustrino supplementary material

Figure 3b.tif

Download Lustrino supplementary material(Image)
Image 16.6 MB