Article contents
Abelian actions on compact nonorientable Riemann surfaces
Part of:
Other groups of matrices
Riemann surfaces
Special aspects of infinite or finite groups
Low-dimensional topology
Published online by Cambridge University Press: 02 December 2021
Abstract
Given an integer $g>2$ , we state necessary and sufficient conditions for a finite Abelian group to act as a group of automorphisms of some compact nonorientable Riemann surface of genus g. This result provides a new method to obtain the symmetric cross-cap number of Abelian groups. We also compute the least symmetric cross-cap number of Abelian groups of a given order and solve the maximum order problem for Abelian groups acting on nonorientable Riemann surfaces.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust
References
Alling, N. L. and Greenleaf, N.,
Foundations of the theory of Klein surfaces
, Lecture Notes in Mathematics, vol. 219 (Springer-Verlag, Berlin-New York, 1971).Google Scholar
Breuer, T., Characters and automorphism groups of compact Riemann surfaces, vol. 280, London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, 2000).Google Scholar
Bujalance, E., Cyclic groups of automorphisms of compact nonorientable Klein surfaces without boundary, Pacific J. Math. 109(2) (1983), 279–289.CrossRefGoogle Scholar
Bujalance, E., A note on the group of automorphisms of a compact Klein surface, Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid 81(3) (1987), 565–569.Google Scholar
Bujalance, E., Cirre, F. J., Etayo, J. J., Gromadzki, G., and Martínez, E., A survey on the minimum genus and maximum order problems for bordered Klein surfaces, in Groups St Andrews 2009 in Bath. Volume 1, vol. 387, London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 2011), 161–182.CrossRefGoogle Scholar
Bujalance, E., Cirre, F. J., Etayo, J. J., Gromadzki, G., and Martínez, E., Automorphism groups of compact non-orientable Riemann surfaces, in Groups St Andrews 2013, vol. 422, London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 2015), 183–193.Google Scholar
Bujalance, E., Cirre, F. J., and Gromadzki, G., A survey of research inspired by Harvey’s theorem on cyclic groups of automorphisms, in Geometry of Riemann surfaces, vol. 368, London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 2010), 15–37.CrossRefGoogle Scholar
Bujalance, E., Etayo, J. J., Gamboa, J. M., and Gromadzki, G., Automorphism groups of compact bordered Klein surfaces. A combinatorial approach, vol. 1439, Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1990).CrossRefGoogle Scholar
Gromadzki, G., Abelian groups of automorphisms of compact nonorientable Klein surfaces without boundary, Comment. Math. Prace Mat. 28(2) (1989), 197–217.Google Scholar
Harvey, W. J., Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86–97.CrossRefGoogle Scholar
Magnus, W., Karrass, A., and Solitar, D., Combinatorial group theory, Second revised ed. (Dover Publications Inc., New York, 1976).Google Scholar
Newman, M., Integral matrices (Academic Press, New York-London, 1972). Pure and Applied Mathematics, Vol. 45.Google Scholar
Rodríguez, J., Some results on abelian groups of automorphisms of compact Riemann surfaces, in Riemann and Klein surfaces, automorphisms, symmetries and moduli spaces, vol. 629. Contemp. Math. (Amer. Math. Soc., Providence, RI, 2014), 283–297.CrossRefGoogle Scholar
Rodríguez, J., Abelian actions on compact bordered Klein surfaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 111(1) (2017), 189–204.CrossRefGoogle Scholar
Singerman, D., Automorphisms of compact non-orientable Riemann surfaces. Glasgow Math. J. 12 (1971), 50–59.Google Scholar
Smith, H. J. S., On systems of linear indeterminate equations and congruences. Philos. Trans. R. Soc. Lond. 151(1861), 293–326.Google Scholar
- 1
- Cited by