Article contents
D3-MODULES VERSUS D4-MODULES – APPLICATIONS TO QUIVERS
Published online by Cambridge University Press: 06 October 2020
Abstract
A module M is called a D4-module if, whenever A and B are submodules of M with M = A ⊕ B and f : A → B is a homomorphism with Imf a direct summand of B, then Kerf is a direct summand of A. The class of D4-modules contains the class of D3-modules, and hence the class of semi-projective modules, and so the class of Rickart modules. In this paper we prove that, over a commutative Dedekind domain R, for an R-module M which is a direct sum of cyclic submodules, M is direct projective (equivalently, it is semi-projective) iff M is D3 iff M is D4. Also we prove that, over a prime PI-ring, for a divisible R-module X, X is direct projective (equivalently, it is Rickart) iff X ⊕ X is D4. We determine some D3-modules and D4-modules over a discrete valuation ring, as well. We give some relevant examples. We also provide several examples on D3-modules and D4-modules via quivers.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust
References
- 4
- Cited by