No CrossRef data available.
Article contents
THE EMBEDDINGS OF THE HEISENBERG GROUP INTO THE CREMONA GROUP
Part of:
Birational geometry
Published online by Cambridge University Press: 09 March 2021
Abstract
In this article, we describe the embeddings of the Heisenberg group into the Cremona group.
MSC classification
Secondary:
14E05: Rational and birational maps
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust
References
Blanc, J. and Cantat, S., Dynamical degrees of birational transformations of projective surfaces, J. Amer. Math. Soc. 29(2) (2016), 415–471.CrossRefGoogle Scholar
Blanc, J. and Déserti, J., Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14(2) (2015), 507–533.Google Scholar
Blanc, J. and Furter, J.-P., Topologies and structures of the Cremona groups, Ann. Math. (2) 178(3) (2013), 1173–1198.CrossRefGoogle Scholar
Blanc, J. and Furter, J.-P., Length in the Cremona group, Ann. H. Lebesgue 2 (2019), 187–257.CrossRefGoogle Scholar
Cantat, S., Dynamique des automorphismes des surfaces K3, Acta Math. 187(1) (2001), 1–57.CrossRefGoogle Scholar
Cantat, S. and Cornulier, Y., Distortion in Cremona groups, Ann. Scuola Normale Sup. Pisa Cl. Sci. 20(2) (2020), 827–858.Google Scholar
Déserti, J., Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer, Int. Math. Res. Not. 27 (2006), Art. ID 71701.Google Scholar
Diller, J. and Favre, C., Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123(6) (2001), 1135–1169.CrossRefGoogle Scholar
Gizatullin, M. H., Rational G-surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 44(1) (1980), 110–144, 239.Google Scholar