Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-31T11:59:47.098Z Has data issue: false hasContentIssue false

Local delta invariants of weak del Pezzo surfaces with the anti-canonical degree $\geq 5$

Published online by Cambridge University Press:  30 January 2025

Hiroto Akaike*
Affiliation:
Department of Mathematics, Tohoku University, 6-3, Aramaki Aza-Aoba, Aobaku, Sendai, Miyagi, Japan

Abstract

The delta invariant interprets the criterion for the K-(poly)stability of log terminal Fano varieties. In this paper, we determine local delta invariants for all weak del Pezzo surfaces with the anti-canonical degree $\geq 5$.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abban, H. and Zhuang, Z., K-stability of Fano varieties via admissible flags, Forum Math Pi. 10, e15 (2022).CrossRefGoogle Scholar
Araujo, C., Castravet, A.-M., Cheltsov, I., et al., The Calabi problem for Fano threefolds, London Mathematical Society Lecture Note Series, vol. 485, (Cambridge University Press, Cambridge, 2021).Google Scholar
Blum, H. and Jonsson, M., Thresholds, valuations, and K-stability, Adv Math 365 (2020), 107062.CrossRefGoogle Scholar
Blum, H. and Xu, C., Uniqueness of K-polystable degenerations of Fano varieties, Ann Math. 190 (2019), 609656.CrossRefGoogle Scholar
Cheltsov, I., Fujita, K., Kishimoto, T. and Okada, T., K-stable divisors in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ of degree $(1,1,2)$ , Nagoya Math. J. 251(2023), 686714.CrossRefGoogle Scholar
Cheltsov, I. and Prokhorov, Y., Del Pezzo surfaces with infinite automorphism groups, Algebraic Geom. 8 (2021), 319357.CrossRefGoogle Scholar
Coray, D. and Tsfasman, M., Arithmetic on Singular Del Pezzo Surfaces. Proceedings of the London Mathematical Society 57, (1988), 2587.CrossRefGoogle Scholar
Denisova, E., $\delta$ -invariant of Du Val del Pezzo surfaces of degree $\geq 4$ , arXiv:2304.11412v1[math.AG].Google Scholar
Dolgachev, I., Classical algebraic geometry. A modern view (Cambridge University Press, 2012).CrossRefGoogle Scholar
Fujita, K. and Odaka, Y., On the K-stability of Fano varieties and anticanonical divisors, Tohoku Math J. 70(4) (2018), 511521.CrossRefGoogle Scholar
Fujita, K., A valuative criterion for uniform K-stability of Q-Fano varieties, J Reine Angew Math 751 (2019), 309338.CrossRefGoogle Scholar
Li, C., K-semistability is equivariant volume minimization, Duke Math J 166(16) (2017), 31473218.CrossRefGoogle Scholar
Liu, Y., Xu, C. and Zhuang, Z., Finite generation for valuations computing stability thresholds and applications to K-stability, Ann Math 196 (2022), 507566.CrossRefGoogle Scholar