Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T07:14:50.224Z Has data issue: false hasContentIssue false

ALMOST-PERFECT MODULES

Published online by Cambridge University Press:  24 June 2010

PINAR AYDOĞDU
Affiliation:
Department of Mathematics, Hacettepe University, 06800 Beytepe Ankara, Turkey e-mails: paydogdu@hacettepe.edu.tr, ozcan@hacettepe.edu.tr
A. ÇIĞDEM ÖZCAN
Affiliation:
Department of Mathematics, Hacettepe University, 06800 Beytepe Ankara, Turkey e-mails: paydogdu@hacettepe.edu.tr, ozcan@hacettepe.edu.tr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We call a module Malmost perfect if every M-generated flat module is M-projective. Any perfect module is almost perfect. We characterize almost-perfect modules and investigate some of their properties. It is proved that a ring R is a left almost-perfect ring if and only if every finitely generated left R-module is almost perfect. R is left perfect if and only if every (projective) left R-module is almost perfect.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2010

References

REFERENCES

1.Amini, B., Amini, A. and Ershad, M., Almost-perfect rings and modules, Comm. Algebra 37 (2009), 42274240.Google Scholar
2.Amini, A., Ershad, M. and Sharif, H., Rings over which flat covers of finitely generated modules are projective, Commun. Algebra 36 (8) (2008), 28622871.Google Scholar
3.Anderson, F. W. and Fuller, K. R., Rings and categories of modules (Spring-Verlag, New York, 1974).Google Scholar
4.Bican, L., El Bashir, R. and Enochs, E., All modules have flat covers, Bull. Lond. Math. Soc. 33 (2001), 385390.Google Scholar
5.Cunningham, R. S. and Rutter, E. A. Jr., Perfect modules, Math. Z. 140 (1974), 105110.Google Scholar
6.Fuchs, L. and Rangaswamy, K. M., Quasi-projective abelian groups, Bull. Soc. Math. France 98 (1970), 58.Google Scholar
7.Kasch, F., Modules and rings, London Mathematical Society Monographs, 17 (Academic Press, London, New York, 1982).Google Scholar
8.Mares, E., Semiperfect modules, Math. Z. 82 (1963), 347360.Google Scholar
9.Varadarajan, K., Perfect modules, Acta Math. Hungar. 78 (1–2) (1998), 19.CrossRefGoogle Scholar
10.Ware, R., Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1971), 233256.Google Scholar
11.Wisbauer, R., Foundations of module and ring theory (Gordon and Breach, Reading, PA, 1991).Google Scholar