Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T11:46:19.706Z Has data issue: false hasContentIssue false

Arithmetics in Cayley's algebra

Published online by Cambridge University Press:  18 May 2009

P. J. C. Lamont
Affiliation:
Royal College of Science and TechnologyGlasgow
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let C denote Cayley's algebra defined over the field of rational numbers. This paper contains a simple characterization of arithmetics of C in terms of a given basis i0 = 1, i1, i2, …, i7. We deduce that certain of the arithmetics of C are isomorphic. The result that the maximal arithmetics are isomorphic is also contained in the work of van der Blij and Springer [2].

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1963

References

REFERENCES

1.Albert, A. A., On a certain algebra of quantum mechanics, Ann. of Math. (2) 35 (1934), 6573.CrossRefGoogle Scholar
2.Blij, F. van der and Springer, T. A., The arithmetic of the octaves and of G 2, Nederl. Akad. Wetensch. Indag. Math. 21 (1959), 406418.CrossRefGoogle Scholar
3.van der Blij, F., History of the octaves, Simon Stevin 34, III (1961), 106125.Google Scholar
4.Brandt, H., Zur Zahlentheorie der Quatemionen, Jber. Deutsch. Math. Verein. 53 (1943), 2357.Google Scholar
5.Cayley, A., Note on a system of imaginaries, Collected Mathematical Papers, vol. I, 127 – Phil. Mag. (3) 26 (1845), 210.Google Scholar
6.Cayley, A., On the eight-square imaginaries, Collected Mathematical Papers, vol. II, 368–371 – Amer. J. Math. 4 (1881), 293296.Google Scholar
7.Coxeter, H. S. M., Integral Cayley Numbers, Duke Math. J. 13 (1946), 561578.CrossRefGoogle Scholar
8.Dickson, L. E., Linear Algebras (Cambridge Tracts in Mathematics, No. 16, 1914).Google Scholar
9.Dickson, L. E., On quaternions and their generalization and the history of the eight square theorem, Ann. of Math. (2) 20 (1919), 155171, 297.Google Scholar
10.Dickson, L. E., Arithmetic of quaternions, Proc. London Math. Soc. (2) 20 (1921), 225232.Google Scholar
11.Dickson, L. E., Algebras and their arithmetics (Chicago, 1923).Google Scholar
12.Dickson, L. E., A new simple theory of hypercomplex integers, J. Math. Pures Appl. (9) 2 (1923) 281326.Google Scholar
13.Hurwitz, A., Über die Zahlentheorie der Quaternionen, Nachr. Akad. Wiss. Göttingen (1896), 313340.Google Scholar
14.Hurwitz, A., Vorlesungen über die Zahlentheorie der Quaternionen (Berlin, 1919).Google Scholar
15.Kirmse, J., Über die Darstellbarkeit naturlicher ganzer Zahlen als Summen von acht Quadraten und über ein mit diesem Problem zusammenhängendes nichtkommutatives und nichtassociatives Zahlensystem, Ber. Verh. Sächs. Akad. Wiss. Leipzig 76 (1924), 6382.Google Scholar
16.Kirmse, J., Zur Darstellbarkeit natürlicher ganzer Zahlen als Summen von acht Quadraten, Ber. Verh. Sächs. Akad. Wiss. Leipzig 80 (1928), 3334.Google Scholar
17.Moufang, R., Zur Struktur von Alternativkörpern, Math. Ann. 110 (1934), 416430.CrossRefGoogle Scholar
18.Zorn, M., Theorie der alternativen Ringen, Abh. Math. Sem. Univ. Hamburg 8 (1931), 123147.CrossRefGoogle Scholar