No CrossRef data available.
Article contents
BIEMBEDDINGS OF STEINER TRIPLE SYSTEMS IN ORIENTABLE PSEUDOSURFACES WITH ONE PINCH POINT
Published online by Cambridge University Press: 13 August 2013
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove that for all n ≡ 13 or 37 (mod 72), there exists a biembedding of a pair of Steiner triple systems of order n in an orientable pseudosurface having precisely one regular pinch point of multiplicity 2.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2013
References
REFERENCES
1.De Pasquale, V., Sui sistemi ternari di 13 elementi, Rend. R. Ist. Lombardo Sci. Lett. 32 (1899), 213–221.Google Scholar
2.Grannell, M. J., Griggs, T. S. and Širáň, J., Recursive constructions for triangulations, J. Graph. Theory 39 (2) (2002), 87–107.CrossRefGoogle Scholar
3.Kirkman, T. P., On a problem in combinations, Cambridge Dublin Math. J. 2 (1847), 191–204.Google Scholar
4.Mathon, R. A., Phelps, K. T. and Rosa, A., Small Steiner triple systems and their properties, Ars Combin. 15 (1983), 3–110.Google Scholar
6.Ringel, G. and Youngs, J. W. T., Das Geschlecht des vollständige dreifarben Graphen, Comment. Math. Helv. 45 (1970), 152–158.Google Scholar
7.Stahl, S. and White, A. T., Genus embeddings for some complete tripartite graphs, Discrete Math. 14 (1976), 279–296.CrossRefGoogle Scholar
8.Youngs, J. W. T., The mystery of the Heawood conjecture, in Graph theory and its applications (Academic Press, New York, NY, 1970), 17–50.Google Scholar
You have
Access