Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:14:01.704Z Has data issue: false hasContentIssue false

BIEMBEDDINGS OF STEINER TRIPLE SYSTEMS IN ORIENTABLE PSEUDOSURFACES WITH ONE PINCH POINT

Published online by Cambridge University Press:  13 August 2013

A. D. FORBES
Affiliation:
Department of Mathematics and Statistics, The Open University, Walton Hall Milton Keynes MK7 6AA, United Kingdom e-mails: anthony.d.forbes@gmail.com, t.s.griggs@open.ac.uk, c.psomas@gmail.com, j.siran@open.ac.uk
T. S. GRIGGS
Affiliation:
Department of Mathematics and Statistics, The Open University, Walton Hall Milton Keynes MK7 6AA, United Kingdom e-mails: anthony.d.forbes@gmail.com, t.s.griggs@open.ac.uk, c.psomas@gmail.com, j.siran@open.ac.uk
C. PSOMAS
Affiliation:
Department of Mathematics and Statistics, The Open University, Walton Hall Milton Keynes MK7 6AA, United Kingdom e-mails: anthony.d.forbes@gmail.com, t.s.griggs@open.ac.uk, c.psomas@gmail.com, j.siran@open.ac.uk
J. ŠIRÁŇ
Affiliation:
Department of Mathematics and Statistics, The Open University, Walton Hall Milton Keynes MK7 6AA, United Kingdom e-mails: anthony.d.forbes@gmail.com, t.s.griggs@open.ac.uk, c.psomas@gmail.com, j.siran@open.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that for all n ≡ 13 or 37 (mod 72), there exists a biembedding of a pair of Steiner triple systems of order n in an orientable pseudosurface having precisely one regular pinch point of multiplicity 2.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2013 

References

REFERENCES

1.De Pasquale, V., Sui sistemi ternari di 13 elementi, Rend. R. Ist. Lombardo Sci. Lett. 32 (1899), 213221.Google Scholar
2.Grannell, M. J., Griggs, T. S. and Širáň, J., Recursive constructions for triangulations, J. Graph. Theory 39 (2) (2002), 87107.CrossRefGoogle Scholar
3.Kirkman, T. P., On a problem in combinations, Cambridge Dublin Math. J. 2 (1847), 191204.Google Scholar
4.Mathon, R. A., Phelps, K. T. and Rosa, A., Small Steiner triple systems and their properties, Ars Combin. 15 (1983), 3110.Google Scholar
5.Ringel, G., Map color theorem (Springer-Verlag, New York, NY, 1974).CrossRefGoogle Scholar
6.Ringel, G. and Youngs, J. W. T., Das Geschlecht des vollständige dreifarben Graphen, Comment. Math. Helv. 45 (1970), 152158.Google Scholar
7.Stahl, S. and White, A. T., Genus embeddings for some complete tripartite graphs, Discrete Math. 14 (1976), 279296.CrossRefGoogle Scholar
8.Youngs, J. W. T., The mystery of the Heawood conjecture, in Graph theory and its applications (Academic Press, New York, NY, 1970), 1750.Google Scholar