Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:09:31.907Z Has data issue: false hasContentIssue false

BIFLATNESS AND BIPROJECTIVITY OF BANACH ALGEBRAS GRADED OVER A SEMILATTICE

Published online by Cambridge University Press:  25 August 2010

NIELS GRØNBÆK
Affiliation:
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark e-mail: gronbaek@math.ku.dk
FEREIDOUN HABIBIAN
Affiliation:
Department of Mathematics, Semnan University, Semnan, Iran e-mail: fhabibian@semnan.ac.ir
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give sufficient conditions and necessary conditions for a Banach algebra, which is ℓ1-graded over a semi-lattice, to be biflat or biprojective. As an application we characterise biflat and biprojective discrete convolution algebras for commutative semi-groups.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2010

References

REFERENCES

1.Choi, Y., Biflatness of ℓ1-semilattice algebras, Semigroup Forum 75 (2007), 253271.CrossRefGoogle Scholar
2.Choi, Y., Simplicial homology of strong semilattices of Banach algebras, Houston J. Math. 36 (2010), 237260.Google Scholar
3.Clifford, A. H. and Preston, G. B., The algebraic theory of semigroups, Vol. 1 (American Mathematical Society, RI, 1961).Google Scholar
4.Dales, H. G., Lau, A. T.-M. and Strauss, D., Banach algebras on semigroups and their compactifications, Mem. Amer. Math. Soc. 205 (2010), no. 966.Google Scholar
5.Duncan, J. and Namioka, I., Amenability of inverse semigroups and their semigroup algebras, Proc. R. Soc. Edinburgh Sect. A 80 (1978), 309321.CrossRefGoogle Scholar
6.Dunford, N. and Schwartz, J. T., Linear operators, Part 1 (Interscience, New York, 1958).Google Scholar
7.Ghandehari, M., Hatami, H. and Spronk, N., Amenability constants for semilattice algebras, Semigroup Forum 79 (2009), 279297.CrossRefGoogle Scholar
8.Grønbæk, N., Amenability of discrete convolution algebras, the commutative case, Pacific J. Math. 143 (1990), 243249.CrossRefGoogle Scholar
9.Helemskiĭ, A. Ya., The homology of Banach and topological algebras, Kluwer, Dordrecht, 1986.Google Scholar
10.Howie, J., Fundamentals of semigroup theory, Lond. Math. Soc. Monogr. (N.S.), Oxford University Press, New York, 1995.Google Scholar
11.Johnson, B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972), 196.Google Scholar
12.Johnson, B. E., Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math. 94 (1972), 685698.CrossRefGoogle Scholar
13.Ramsden, P., Biflatness of semigroup algebras, Semigroup Forum 79 (2009), 515530.CrossRefGoogle Scholar
14.Selivanov, Yu. V., Biprojective Banach algebras, Math. USSR Izvestija 15 (1980), 387399.CrossRefGoogle Scholar
15.Taylor, J. L., Homology and cohomology for topological algebras, Adv. Math. 9 (1972), 137182.CrossRefGoogle Scholar