Published online by Cambridge University Press: 31 July 2003
We continue the investigation of tabular algebras with trace (a certain class of associative $\mathbb{z}[v, v^{-1}]$-algebras equipped with distinguished bases) by determining the extent to which the tabular structure may be recovered from a knowledge of the structure constants. This problem is equivalent to understanding a certain category (the category of table data associated to a tabular algebra) which we introduce. The main result is that this category is equivalent to another category (the category of based posets associated to a tabular algebra) whose structure we describe explicitly.