Published online by Cambridge University Press: 02 August 2011
We consider a class of operators that contains the strictly singular operators and it is contained in the perturbation class of the upper semi-Fredholm operators PΦ+. We show that this class is strictly contained in PΦ+, solving a question of Friedman. We obtain similar results for the strictly cosingular operators and the perturbation class of the lower semi-Fredholm operators PΦ−. We also characterize in terms of PΦ+ and in terms of PΦ−. As a consequence, we show that and are the biggest operator ideals contained in PΦ+ and PΦ−, respectively.