No CrossRef data available.
Published online by Cambridge University Press: 18 May 2009
If X is a class of groups, the class of counter-Xgroups is defined to consist of all groups having no non-trivial X-quotients. The counter-abelian groups are the perfect groups and the counter-counter-abelian groups are the imperfect groups studied by Berrick and Robinson [2]. This paper is concerned with the class of counter-counterfinite groups. It turns out that these are the groups in which any non-trivial quotient has a non-trivial representation over any finitely generated domain (Theorem 1.1), so we shall call these groups highly representable or HR-groups.