Article contents
CLASSIFYING CLOSED 2-ORBIFOLDS WITH EULER CHARACTERISTICS
Published online by Cambridge University Press: 25 August 2010
Abstract
We determine the extent to which the collection of Γ-Euler–Satake characteristics classify closed 2-orbifolds. In particular, we show that the closed, connected, effective, orientable 2-orbifolds are classified by the Γ-Euler–Satake characteristics corresponding to free or free abelian Γ and are not classified by those corresponding to any finite set of finitely generated discrete groups. These results demonstrate that the Γ-Euler–Satake characteristics corresponding to free abelian Γ constitute new invariants of orbifolds. Similarly, we show that such a classification is neither possible for non-orientable 2-orbifolds nor for non-effective 2-orbifolds using any collection of groups Γ.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2010
References
REFERENCES
- 2
- Cited by