Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-15T10:31:28.516Z Has data issue: false hasContentIssue false

A continuation theory for weakly inward maps

Published online by Cambridge University Press:  18 May 2009

Donal O'Regan
Affiliation:
Department of Mathematics, National University of Ireland, Galway, Ireland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fixed point and random fixed point theorems are presented for weakly inward maps. Also a continuation theorem for weakly inward maps is presented.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1998

References

REFERENCES

1.Beg, I. and Shahzad, N., Random fixed points of weakly inward operators in conical shells, J. Applied Mathematics and Stochastic Analysis 8 (1995), 261264.Google Scholar
2.Deimling, K., Fixed points of weakly inward maps, Nonlinear Anal., 10 (1986), 12611262.CrossRefGoogle Scholar
3.Deimling, K., Multivalued Differential Equations (Walter de Gruyter, Berlin, 1992).CrossRefGoogle Scholar
4.Fitzpatrick, P. M. and Petryshyn, W. V., Fixed point theorems for multivalued noncompact acyclic mappings, Pacific J. Math. 54 (1974), 1723.CrossRefGoogle Scholar
5.Gorniewicz, L., Granas, A. and Kryszewski, W., Sur la méthode de l'homotopie dans la théorie des points fixes pour les applications multivoques (Partie 1: Transversalite topologique), C. R. Acid. Sci. Paris, Ser. 1, 307 (1988), 489492.Google Scholar
6.Gustafson, G. B. and Schmitt, K., Nonzero solutions of boundary value problems for second order ordinary and delay differential equations, J. Differential Equations 12 (1972), 129147.CrossRefGoogle Scholar
7.Lan, K. Q. and Webb, J. R. L., A fixed point index for weakly inward A-proper maps, Non-linear Anal. 28 (1997), 315325.CrossRefGoogle Scholar
8.O'Regan, D., Some fixed point theorems for concentrative mappings between locally convex linear topological spaces, Nonlinear Anal., 27 (1996) 14371446.CrossRefGoogle Scholar
9.O'Regan, D., Coincidence principles and fixed point theory for mappings in locally convex spaces. Rocky Mountain J. Math., to appear.Google Scholar
10.O'Regan, D., Existence of nonnegative solutions to superlinear non-positone problems via a fixed point theorem in cones of Banach spaces, Dynamics of Continuous, Discrete and Impulsive Systems, 3 (1997), 517530.Google Scholar
11.O'Regan, D., Fixed points for set valued mappings in locally convex linear topological spaces, Mathematical and Computer Modelling, 28(1) (1998), 4555.CrossRefGoogle Scholar
12.Precup, R., On some fixed point theorems of Deimling, Nonlinear Anal. 23 (1994), 13151320.CrossRefGoogle Scholar
13.Reich, S., Fixed points in locally convex spaces, Math. Z. 125 (1972), 1731.CrossRefGoogle Scholar
14.Reich, S., A fixed point theorem for Frechet spaces, J. Math. Anal. Appl. 78 (1980), 3335.CrossRefGoogle Scholar
15.Sun, Shouchuan Hu and Yong, Fixed point index for weakly inward maps, J. Math. Anal. Appl. 172 (1993), 266273.Google Scholar
16.Chaljub-Simon, Alice and Volkmann, P., Existence of ground states with exponential decay for semi-linear elliptic equations in Rn, J. Differential Equations, 76 (1988), 374390.CrossRefGoogle Scholar
17.Tan, K. K. and Yuan, X. Z., Random fixed point theorems and approximation in cones, J. Math. Anal. Appl, 185 (1994), 378390.CrossRefGoogle Scholar
18.Webb, J. R. L., A-properness and fixed points of weakly inward mappings, J. London Math. Soc, 27 (1983), 141149.CrossRefGoogle Scholar