No CrossRef data available.
Article contents
A decomposition theorem for submeasures
Published online by Cambridge University Press: 18 May 2009
Extract
In recent years versions of the Lebesgue and the Hewitt-Yosida decomposition theorems have been proved for group-valued measures. For example, Traynor [4], [6] has established Lebesgue decomposition theorems for exhaustive groupvalued measures on a ring using (1) algebraic and (2) topological notions of continuity and singularity, and generalizations of the Hewitt-Yosida theorem have been given by Drewnowski [2], Traynor [5] and Khurana [3]. In this paper we consider group-valued submeasures and in particular we have established a decomposition theorem from which analogues of the Lebesgue and Hewitt-Yosida decomposition theorems for submeasures may be derived. Our methods are based on those used by Drewnowski in [2] and the main theorem established generalizes Theorem 4.1 of [2].
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1985