Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T06:51:12.345Z Has data issue: false hasContentIssue false

DIFFERENTIAL SIMPLICITY AND CYCLIC MAXIMAL IDEALS OF THE WEYL ALGEBRA $A_{2}(K)$

Published online by Cambridge University Press:  23 August 2006

ADA MARIA DE S. DOERING
Affiliation:
Instituto de Matemática, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, 91 509 - 900 Porto Alegre - RS, Brazil
YVES LEQUAIN
Affiliation:
Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22 460 - 320 Rio de Janeiro - RJ, Brazil e-mail: ylequain@impa.br
CYDARA C. RIPOLL
Affiliation:
Instituto de Matemática, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, 91 509 - 900 Porto Alegre - RS, Brazil e-mail: cydara@mat.ufrgs.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $K$ be a field of characteristic zero and $A_{2}:=A_{2}(K)$ the 2$nd$–Weyl algebra over $K$. We establish a close connection between the maximal left ideals of $A_{2}$ and the simple derivations of $K[X_{1},X_{2}]$.

MAIN THEOREM. Let$d = \partial_1 + \beta\partial_2$be a simple derivation of$K[X_1, X_2]$with$\beta\in K[X_1, X_2]$. Then, there exists$\gamma\in K[X_1, X_2]$such that$d + \gamma$generates a maximal left ideal of$A_2$. More precisely, the following is true:

  1. $\deg_{X_2} (\beta) \geq 2$ or $\deg_{X_2} (\beta) = 1$ and $\deg_{X_1} (\partial_2(\beta)) \geq 1$;

  2. $d + gX_2$generates a maximal left ideal of$A_2$if$g \in K[X_1]\\{0\}$is such that

  1. (a) $g \in -(\partial^2_2(\beta)/2)\mathbb{N}$when$\deg_{X_2} (\beta) \geq 2$,

  2. (b) $\deg_{X_1} (g) < \deg_{X_1} (\partial_2(\beta))$when$\deg_{X_2} (\beta) = 1$.

As applications, we obtain large families of concrete examples of cyclic maximal left ideals of $A_2$; such examples have been rather scarce so far.

Type
Research Article
Copyright
2006 Glasgow Mathematical Journal Trust