Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T06:43:55.002Z Has data issue: false hasContentIssue false

DIOPHANTINE APPROXIMATION BY PRIMES

Published online by Cambridge University Press:  31 July 2009

KAISA MATOMÄKI*
Affiliation:
Department of Mathematics, University of Turku, 20014 Turku, Finland e-mail: ksmato@utu.fi
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that whenever δ > 0 and constants λi satisfy some necessary conditions, there are infinitely many prime triples p1, p2, p3 satisfying the inequality |λ0 + λ1p1 + λ2p2 + λ3p3| < (max pj)−2/9+δ. The proof uses Davenport–Heilbronn adaption of the circle method together with a vector sieve method.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2009

References

REFERENCES

1.Baker, A., On some Diophantine inequalities involving primes, J. Reine Angew. Math. 228 (1967), 166181.Google Scholar
2.Baker, R. C. and Harman, G., Diophantine approximation by prime numbers, J. Lond. Math. Soc. 25 (2) (1982), 201215.CrossRefGoogle Scholar
3.Baker, R. C., Harman, G. and Pintz, J., The exceptional set for Goldbach's problem in short intervals, in Sieve methods, exponential sums and their applications in number theory (Greaves, G. R. H., Harman, G. and Huxley, M. N., Editors) (Cambridge University Press, Cambridge, UK, 1997), 154.Google Scholar
4.Brüdern, J. and Fouvry, E., Le crible à vecteurs, Compositio Math. 102 (1996), 337355.Google Scholar
5.Gallagher, P. X., A large sieve density estimate near σ = 1, Invent. Math. 11 (1970), 329339.CrossRefGoogle Scholar
6.Harman, G., On the distribution of αp modulo one I, J. Lond. Math. Soc. 27 (2) (1983), 918.CrossRefGoogle Scholar
7.Harman, G., Diophantine approximation by prime numbers, J. Lond. Math. Soc. 44 (2) (1991), 218226.CrossRefGoogle Scholar
8.Harman, G., On the distribution of αp modulo one II, Proc. Lond. Math. Soc. 72 (3) (1996), 241260.CrossRefGoogle Scholar
9.Harman, G., Prime-detecting sieves, vol. 33: London Mathematical Society Monographs (New Series) (Princeton University Press, Princeton, 2007).Google Scholar
10.Heath-Brown, D. R., Prime numbers in short intervals and a generalized Vaughan identity, Can. J. Math. 34 (1982), 13651377.CrossRefGoogle Scholar
11.Heath-Brown, D. R., The number of primes in a short interval, J. Reine Angew. Math. 389 (1988), 2263.Google Scholar
12.Iwaniec, H. and Kowalski, E., Analytic number theory, vol. 53: American Mathematical Society Colloquium Publications (American Mathematical Society, Providence, RI, 2004).Google Scholar
13.Saffari, B. and Vaughan, R. C., On the fractional parts of x/n and related sequences II, Ann. Inst. Fourier 27 (1977), 130.CrossRefGoogle Scholar
14.Schwarz, W., Über die Lösbarkeit gewisser Ungleichungen durch Primzahlen, J. Reine Angew. Math. 212 (1963), 150157.CrossRefGoogle Scholar
15.Vaughan, R. C., Diophantine approximation by prime numbers, I, Proc. Lond. Math. Soc. 28 (3), (1974), 373384.CrossRefGoogle Scholar
16.Vaughan, R. C., The Hardy–Littlewood method, vol. 125: Cambridge Tracts in Mathematics, 2nd edition (Cambridge University Press, Cambridge, UK, 1997).CrossRefGoogle Scholar