Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T07:10:31.932Z Has data issue: false hasContentIssue false

D-SIMPLE RINGS AND PRINCIPAL MAXIMAL IDEALS OF THE WEYL ALGEBRA

Published online by Cambridge University Press:  27 July 2005

YVES LEQUAIN
Affiliation:
Instituto de Matemtica Pura e Aplicada, IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro RJ, Brazil e-mail: ylequain@impa.br
DANIEL LEVCOVITZ
Affiliation:
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo – Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil e-mail: lev@icmc.usp.br, jcsouzajr@rantac.com.br
JOSÉ CARLOS DE SOUZA
Affiliation:
Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo – Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil e-mail: lev@icmc.usp.br, jcsouzajr@rantac.com.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that if the order-one differential operator $S=\partial_1 + \sum_{i=2}^{n} \beta_i\partial_i + \gamma$, with $\beta_i,\gamma \in K[x_1,\ldots,x_n]$, generates a maximal left ideal of the Weyl algebra $A_n(K)$, then $S$ does not admit any Darboux differential operator in $K[x_1,\ldots,x_n]\langle \partial_2,\ldots,\partial_n\rangle $; hence in particular, the derivation $\partial_1 + \sum_{i=2}^{n} \beta_i\partial_i$ does not admit any Darboux polynomial in $K[x_1,\ldots,x_n]$. We show that the converse is true when $\beta_i \in K[x_1,x_i]$, for every $i=2,\ldots,n$. Then, we generalize to $K[x_1,\ldots,x_n]$ the classical result of Shamsuddin that characterizes the simple linear derivations of $K[x_1,x_2]$. Finally, we establish a criterion for the left ideal generated by $S$ in $A_n(K)$ to be maximal in terms of the existence of polynomial solutions of a finite system of differential polynomial equations.

Type
Research Article
Copyright
2005 Glasgow Mathematical Journal Trust