Article contents
Elementary operators on prime C*-algebras II†
Published online by Cambridge University Press: 18 May 2009
Extract
Compact elementary operators acting on the algebra ℒ(H) of all bounded operators on some Hilbert space H were characterised by Fong and Sourour in [9]. Akemann and Wright investigated compact and weakly compact derivations on C*-algebras [1], and also studied compactness properties of the sum and the product of the right and the left regular representation of an element in a C*-algebra [2]. They used the concept of a compact Banach algebra element due to Vala [17]: an element a in a Banach algebra A is called compact if the mapping x → axa is compact on A. This notion has been further investigated by Ylinen [18, 19, 20], who showed in particular that a is a compact element of the C*-algebra A if x ↦ axa is weakly compact on A [19].
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1988
References
- 10
- Cited by