Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T22:23:23.287Z Has data issue: false hasContentIssue false

EXISTENCE OF A SOLUTION FOR A SINGULAR DIFFERENTIAL EQUATION WITH NONLINEAR FUNCTIONAL BOUNDARY CONDITIONS*

Published online by Cambridge University Press:  09 August 2007

ALBERTO CABADA
Affiliation:
Departamento de Análise Matemática, Facultade de Matemáticas, Campus Sur, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain e-mail: cabada@usc.es
JOSÉ ÁNGEL CID
Affiliation:
Departamento de Matemáticas, Universidad de Jaén, Campus Las Lagunillas, Ed. B3, 23009, Jaén, Spain e-mail: angelcid@ujaen.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we deal with some boundary value problems related with diffusion processes in the presence of lower and upper solutions. Singularities as well as non local boundary conditions are allowed. We also prove the existence of extremal solutions and the uniqueness of solution for a particular case.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2007

Footnotes

*

Partially supported by D.G.I. and F.E.D.E.R. project BFM2001-3884-C02-01, and by Xunta of Galicia and F.E.D.E.R. project PGIDT05PXIC20702PN, Spain.

References

REFERENCES

1. Adje, A., Sur et sous-solutions généralisées et problémes aux limites du second ordre, Bull. Soc. Math. Bel. Sér. B 42 (1990), 347.Google Scholar
2. Anderson, D. and Lisak, M., Approximate solutions of nonlinear diffusion equations, Phys. Rev. A 22 (1980), 27612768.CrossRefGoogle Scholar
3. Cabada, A., Cid, J. A. and Pouso, R. L., Positive solutions for a class of singular differential equations arising in diffusion processes, Dyn. Contin. Discrete Impuls. Syst. 12 (2005), 329342.Google Scholar
4. Cabada, A. and Heikkilä, S., Extremality results for discontinuous explicit and implicit diffusion problems, J. Comput. Appl. Math. 143 (2002), 6980.Google Scholar
5. Cabada, A., Nieto, J. J. and Pouso, R. L., Approximate solutions to a new class of nonlinear diffusion problems, J. Comp. Appl. Math. 108 (1999), 219231.CrossRefGoogle Scholar
6. Cabada, A. and Pouso, R. L., Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions, Nonlinear Anal. 42 (2000), 13771396.Google Scholar
7. Cabada, A. and Pouso, R. L., Existence theory for functional p-Laplacian equations with variable exponents, Nonlinear Anal. 52 (2003), 557572.Google Scholar
8. Carmona, R. A. and Xu, L., Diffusive hydrodynamic limits for systems of interacting diffusions with finite range random interaction, Commun. Math. Phys. 188 (1997), 565584.CrossRefGoogle Scholar
9. Cid, J. A., On extremal fixed points in Schauder's theorem with applications to differential equations, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), 1520.CrossRefGoogle Scholar
10. Cid-Araújo, J. A., The uniqueness of fixed points for decreasing operators, Appl. Math. Lett. 17 (2004), 861866.CrossRefGoogle Scholar
11. Chen, X. and Chen, Y. M., Efficient algorithm for solving inverse source problems of a nonlinear diffusion equation in microwave heating. J. Comput. Phys. 132 (1997), 374.CrossRefGoogle Scholar
12. De Coster, C. and Habets, P., The lower and upper solutions method for boundary value problems, in Handbook of differential equations – ordinary differential equations, Editors Canada, A., Drábek, P. and Fonda, A. (Elsevier, 2004), 69160.CrossRefGoogle Scholar
13. Fabry, Ch. and Habets, P., Upper and lower solutions for second – order boundary value problems with nonlinear boundary conditions, Nonlinear Anal. T.M.A. 10 (1986), 9851007.CrossRefGoogle Scholar
14. Gaudenzi, M., Habets, P. and Zanolin, F., Positive solutions of singular boundary value problems with indefinite weight, Bull. Belg. Math. Soc. 9 (2002), 607619.Google Scholar
15. King, J. R., Approximate solutions to a nonlinear diffusion equation, J. Engrg. Math. 22 (1988), 5372.Google Scholar
16. King, J. R., Exact solutions to a nonlinear diffusion equation, J. Phys. A 24 (1991), 32133216.Google Scholar
17. Mayergoyz, I. D., Nonlinear diffusion and superconducting hysteresis, IEEE Trans. Magn. 32 (1996), 4192.CrossRefGoogle Scholar
18. Nagumo, M., On principally linear elliptic differential equations of the second order, Osaka Math. J. 6 (1954), 207229.Google Scholar
19. Nieto, J. J. and Okrasinski, W., Existence, uniqueness, and approximation of solutions to some nonlinear diffusion problems, J. Math. Anal. Appl. 210 (1997), 231240.CrossRefGoogle Scholar
20. Okrasinski, W., Integral equations methods in the theory of the water percolation, in Mathematical methods in fluid mechanics (Oberwolfach, 1981), Methoden Verfahren Math. Phys. 24 (1982), 167176.Google Scholar
21. Okrasinski, W., On approximate solutions to some nonlinear diffusion problems, Z. Angew. Math. Phys. 44 (1993), 722731.CrossRefGoogle Scholar
22. Tuck, B., Some explicit solutions to the nonlinear diffusion equations, J. Phys. D 9 (1976), 1559.CrossRefGoogle Scholar
23. Valkealahti, S. and Manninen, M., Diffusion processes and growth on aluminium cluster surfaces, Z. Phys. D – Atoms Mol. Clusters 40 (1997), 496.Google Scholar