No CrossRef data available.
Article contents
EXTENSIONS OF HILBERTIAN RINGS
Part of:
General field theory
Published online by Cambridge University Press: 05 November 2018
Abstract
We generalize known results about Hilbertian fields to Hilbertian rings. For example, let R be a Hilbertian ring (e.g. R is the ring of integers of a number field) with quotient field K and let A be an abelian variety over K. Then, for every extension M of K in K(Ator(Ksep)), the integral closure RM of R in M is Hilbertian.
MSC classification
Primary:
12E30: Field arithmetic
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2018
References
Bary-Soroker, L., Fehm, A. and Wiese, G., Hilbertian fields and Galois representations, J. für die reine und Angew. Math. 712 (2016), 123–139.Google Scholar
Fehm, A. and Petersen, S., Division fields of commutative algebraic groups, Isr. J. Math. 195 (2013), 123–134.CrossRefGoogle Scholar
Fried, M. and Jarden, M., Field arithmetic (3rd edn.), Ergebnisse der Mathematik (3), vol. 11 (Springer, Heidelberg, 2008).Google Scholar
Haran, D., Hilbertian fields under separable algebraic extensions, Invent. Math. 137 (1) (1999), 113–126.CrossRefGoogle Scholar
Jarden, M., Diamonds in torsion of Abelian varieties, J. Inst. Math. Jussieu 9 (2010), 477–480.CrossRefGoogle Scholar
Larsen, M. and Pink, R., Finite subgroups of algebraic groups, J. Am. Math. Soc. 24 (2011), 1105–1158.CrossRefGoogle Scholar
Weissauer, R., Der Hilbertsche Irreduzibilitätssatz, J. für die reine und Angew. Math. 334 (1982), 203–220.Google Scholar