Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T15:56:00.313Z Has data issue: false hasContentIssue false

FOCAL SURFACES OF WAVE FRONTS IN THE EUCLIDEAN 3-SPACE

Published online by Cambridge University Press:  13 July 2018

KEISUKE TERAMOTO*
Affiliation:
Department of Mathematics, Graduate School of Science, Kobe University, Rokko 1-1, Nada, Kobe 657-8501, Japan E-mail: teramoto@math.kobe-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterise singularities of focal surfaces of wave fronts in terms of differential geometric properties of the initial wave fronts. Moreover, we study relationships between geometric properties of focal surfaces and geometric invariants of the initial wave fronts.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2018 

References

REFERENCES

1. Arnol'd, V. I., Gusein-Zade, S. M. and Varchenko, A. N., Singularities of differentiable maps, vol. 1, Monographs in mathematics vol. 82 (Birkhäuser, Boston, 1985).Google Scholar
2. Bruce, J. W., Giblin, P. J. and Tari, F., Ridges, crests and sub-parabolic lines of evolving surfaces, Int. J. Comput. Vis. 18 (1995), 195210.Google Scholar
3. Bruce, J. W., Giblin, P. J. and Tari, F., Families of surfaces: Focal sets, ridges and umbilics, Math. Proc. Camb. Philos. Soc. 125 (2) (1999), 243268.Google Scholar
4. Bruce, J. W. and Tari, F., Extrema of principal curvature and symmetry, Proc. Edinb. Math. Soc. 39 (2) (1996), 397402.Google Scholar
5. Bruce, J. W. and Wilkinson, T. C., Folding maps and focal sets, Singularity theory and its applications, part I (Coventry, 1988/1989), 6372, Lecture notes in mathematics, 1462 (Springer, Berlin, 1991).Google Scholar
6. do Carmo, M. P., Riemannian geometry, Mathematics: Theory and applications (Birkhäuser Basel, 1992).Google Scholar
7. Cecil, T. E. and Ryan, P. J., Focal sets of submanifolds, Pac. J. Math. 78 (1) (1978), 2739.Google Scholar
8. Fujimori, S., Saji, K., Umehara, M. and Yamada, K., Singularities of maximal surfaces, Math. Z. 259 (4) (2008), 827848.Google Scholar
9. Fukui, T. and Hasegawa, M., Singularities of parallel surfaces, Tohoku Math. J. 64 (3) (2012), 387408.Google Scholar
10. Fukui, T. and Hasegawa, M., Fronts of Whitney umbrella – a differential geometric approach via blowing up, J. Singul. 4 (2012), 3567.Google Scholar
11. Golubitsky, M. and Guillemin, V., Stable mappings and their singularities, Graduate texts in mathematics, vol. 14 (Springer, 1973).Google Scholar
12. Hasegawa, M., Honda, A., Naokawa, K., Saji, K., Umehara, M. and Yamada, K., Intrinsic properties of surfaces with singularities, Int. J. Math. 26 (4) (2015), 1540008, 34pp.Google Scholar
13. Honda, A., Isometric immersions with singularities between space forms of the same positive curvature, J. Geom. Anal. 27 (2017), 24002417.Google Scholar
14. Ishikawa, G. and Machida, Y., Singularities of improper affine spheres and surfaces of constant Gaussian curvature, Int. J. Math. 17 (3) (2006), 269293.Google Scholar
15. Izumiya, S., Romero Fuster, M. C., Ruas, M. A. S. and Tari, F., Differential geometry from a singularity theory viewpoint (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016).Google Scholar
16. Izumiya, S. and Saji, K., The mandala of Legendrian dualities for pseudo-spheres in Lorentz–Minkowski space and “flat” spacelike surfaces, J. Singul. 2 (2010), 92127.Google Scholar
17. Izumiya, S., Saji, K. and Takahashi, M., Horospherical flat surfaces in hyperbolic 3-space, J. Math. Soc. Jpn. 62 (3) (2010), 789849.Google Scholar
18. Izumiya, S., Saji, K. and Takeuchi, N., Singularities of line congruences, Proc. R. Soc. Edinb. Ser. A 133 (6) (2003), 13411359.Google Scholar
19. Izumiya, S., Saji, K. and Takeuchi, N., Flat surfaces along cuspidal edges, J. Singul. 16 (2017), 73100.Google Scholar
20. Kitagawa, Y. and Umehara, M., Extrinsic diameter of immersed flat tori in S 3, Geom. Dedicata 155 (2011), 105140.Google Scholar
21. Klingenberg, W., A course in differential geometry, Graduate texts in mathematics, vol. 51 (Springer, 1978).Google Scholar
22. Kokubu, M., Rossman, W., Saji, K., Umehara, M. and Yamada, K., Singularities of flat fronts in hyperbolic space, Pac. J. Math. 221 (2) (2005), 303351.Google Scholar
23. Kokubu, M., Rossman, W., Umehara, M. and Yamada, K., Flat fronts in hyperbolic 3-space and their caustics, J. Math. Soc. Jpn. 59 (3) (2007), 265299.Google Scholar
24. Martins, L. F. and Saji, K., Geometric invariants of cuspidal edges, Can. J. Math. 68 (2) (2016), 445462.Google Scholar
25. Martins, L. F., Saji, K., Umehara, M. and Yamada, K., Behavior of Gaussian curvature and mean curvature near non-degenerate singular points on wave fronts, in Geometry and topology of manifolds, Springer proceedings in mathematics & statistics, vol. 154 (Springer, Tokyo, 2016), 247281.Google Scholar
26. Morin, B., Forms canonique des singularités d'une application différentiable, Comptes Rendus Acad. Sci. Paris 260 (1965), 56625665.Google Scholar
27. Morris, R., The sub-parabolic lines of a surface, in The mathematics of surfaces, VI (Uxbridge, 1994), Institute of Mathematics and its Applications Conference Series, New Series58 (Oxford University Press, New York, 1996), 79102.Google Scholar
28. Murata, S. and Umehara, M., Flat surfaces with singularities in Euclidean 3-space, J. Differ. Geom. 221 (2) (2005), 303351.Google Scholar
29. Naokawa, K., Umehara, M. and Yamada, K., Isometric deformations of cuspidal edes, Tohoku Math. J. 68 (1) (2016), 7390.Google Scholar
30. Porteous, I. R., The normal singularities of a submanifold, J. Differ. Geom. 5 (1971), 543564.Google Scholar
31. Porteous, I. R., Geometric differentiation (Cambridge University Press, 2001).Google Scholar
32. Saji, K., Criteria for D 4 singularities of wave fronts, Tohoku Math. J. 63 (1) (2011), 137147.Google Scholar
33. Saji, K., Umehara, M. and Yamada, K., Behavior of corank one singular points on wave fronts, Kyushu J. Math. 62 (1) (2008), 259280.Google Scholar
34. Saji, K., Umehara, M. and Yamada, K., Ak singularities of wave fronts, Math. Proc. Camb. Philos. Soc. 146 (3) (2009), 731746.Google Scholar
35. Saji, K., Umehara, M. and Yamada, K., The geometry of fronts, Ann. Math. (2) 169 (2) (2009), 491529.Google Scholar
36. Tari, F., Caustics of surfaces in the Minkowski 3-space, Q. J. Math. 63 (1) (2012), 189209.Google Scholar
37. Teramoto, K., Parallel and dual surfaces of cuspidal edges, Differ. Geom. Appl. 44 (2016), 5262.Google Scholar
38. Teramoto, K., Principal curvatures and parallel surfaces of wave fronts, to appear in Adv. Geom., arXiv:1612.00577.Google Scholar