No CrossRef data available.
Article contents
The Fourier transform of vector-valued functions
Published online by Cambridge University Press: 18 May 2009
Extract
For each natural number n, let un(x)=(1—cos nx)/πnx2(xɛℝ). It is well–known that a bounded continuous function f on the real line ℝ is the Fourier transform of an integrable function on ℝ if and only if the functions Φn(f) (n= 1, 2,…), defined by
form a Cauchy sequence in the space L1(ℝ) (cf. [2]). Such a characterization, which can be extended to functions defined on a locally compact Abelian group more general than ℝ, is based on the fact that the space L1(ℝ) is complete with respect to convergence in mean.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1985