Published online by Cambridge University Press: 31 October 2018
In this paper, we investigate free actions of some compact groups on cohomology real and complex Milnor manifolds. More precisely, we compute the mod 2 cohomology algebra of the orbit space of an arbitrary free ℤ2 and $\mathbb{S}^1$-action on a compact Hausdorff space with mod 2 cohomology algebra of a real or a complex Milnor manifold. As applications, we deduce some Borsuk–Ulam type results for equivariant maps between spheres and these spaces. For the complex case, we obtain a lower bound on the Schwarz genus, which further establishes the existence of coincidence points for maps to the Euclidean plane.