Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T06:54:30.314Z Has data issue: false hasContentIssue false

GLOBAL EXISTENCE AND BLOW-UP FOR A DOUBLY DEGENERATE PARABOLIC EQUATION SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

Published online by Cambridge University Press:  12 December 2011

YONG-SHENG MI
Affiliation:
College of Mathematics and Statistics, Chongqing University, Chongqing 400044, PR China; College of Mathematics and Computer Sciences, Yangtze Normal University, Fuling 408100, Chongqing, PR China e-mail: miyongshen@163.com
CHUN-LAI MU
Affiliation:
College of Mathematics and Statistics, Chongqing University, Chongqing 400044, PR China e-mail: chunlaimu@yahoo.com.cn
DENG-MING LIU
Affiliation:
College of Mathematics and Statistics, Chongqing University, Chongqing 400044, PR China e-mail: liudengming08@163.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we deal with the global existence and blow-up of solutions to a doubly degenerative parabolic system with nonlinear boundary conditions. By constructing various kinds of sub- and super-solutions and using the basic properties of M-matrix, we give the necessary and sufficient conditions for global existence of non-negative solutions, which extend the recent results of Zheng, Song and Jiang (S. N. Zheng, X. F. Song and Z. X. Jiang, Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux, J. Math. Anal. Appl. 298 (2004), 308–324), Xiang, Chen and Mu (Z. Y. Xiang, Q. Chen, C. L. Mu, Critical curves for degenerate parabolic equations coupled via nonlinear boundary flux, Appl. Math. Comput. 189 (2007), 549–559) and Zhou and Mu (J. Zhou and C. L Mu, On critical Fujita exponents for degenerate parabolic system coupled via nonlinear boundary flux, Pro. Edinb. Math. Soc. 51 (2008), 785–805) to more general equations.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2011

References

REFERENCES

1.Astrita, G. and Marrucci, G., Principles of non-Newtonian fluid mechanics (McGraw-Hill, New York, 1974).Google Scholar
2.Berman, A. and Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics (SIAM, Philadelphia, PA, 1994).CrossRefGoogle Scholar
3.Chen, B. T., Mi, Y. S. and Mu, C. L., Critical exponents for a doubly degenerate parabolic system coupled via nonlinear boundary flux, Acta Mathematica Scientia 31B (2011), 681693.Google Scholar
4.Cui, Z. J., Critical curves of the non-Newtonian polytropic filtration equations coupled with nonlinear boundary conditions, Nonlinear Anal. 68 (2008), 32013208.CrossRefGoogle Scholar
5.Deng, K. and Levine, H. A., The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl. 243 (2000), 85126.CrossRefGoogle Scholar
6.Dibenedetto, E., Degenerate parabolic equations (Springer-Verlag, Berlin, 1993).CrossRefGoogle Scholar
7.Ferreira, R., de Pablo, A., Quiros, F. and Rossi, J. D., The blow-up profile for a fast diffusion equation with a nonlinear boundary condition, Rocky Mt. J. Math. 33 (2003), 123146.CrossRefGoogle Scholar
8.Filo, J., Diffusivity versus absorption through the boundary, J. Differ. Equ. 99 (1992), 281305.CrossRefGoogle Scholar
9.Fujita, H., On the blowing up of solutions of the Cauchy problem for ut = Δ u + u 1+α, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109124.Google Scholar
10.Galaktionov, V. A. and Levine, H. A., On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary, Israel J. Math. 94 (1996), 125146.CrossRefGoogle Scholar
11.Galaktionov, V. A. and Levine, H. A., A general approach to critical Fujita exponents and systems, Nonlinear Anal. 34 (1998), 10051027.CrossRefGoogle Scholar
12.Ivanov, A. V., Hoder estimates for quasilinear doubly degenerate parabolic equations, J. Soviet Math. 56 (1991), 23202347.CrossRefGoogle Scholar
13.Jiang, Z. X., Doubly degenerate parabolic equation with nonlinear inner sources or boundary flux, Doctorate Thesis (Dalian University of Tcchnology, China, 2009).Google Scholar
14.Jin, C. H. and Yin, J. X., Critical exponents and non-extinction for a fast diffusive polytropic filtration equation with nonlinear boundary sources, Nonlinear Anal. 67 (2007), 22172223.CrossRefGoogle Scholar
15.Kalashnikov, A. S., Some problems of the qualitative theory of nonlinear degenerate parabolic equations of second order, Uspekhi Mat. Nauk. 42 (1987), 135176 (English translation: Russian Math. Surveys 42 (1987), 169–222).Google Scholar
16.Levine, H. A., The role of critical exponents in blow up theorems, SIAM Rev. 32 (1990), 262288.CrossRefGoogle Scholar
17.Li, Y. X., Liu, Q. L. and Xie, C. H., Semilinear reaction-diffusion systems of several components, J. Diff. Equ. 187 (2003), 510519.CrossRefGoogle Scholar
18.Li, Z. P. and Mu, C. L., Critical curves for fast diffusive polytropic filtration equation coupled via nonlinear boundary flux, J. Math. Anal. Appl. 346 (2008), 5564.CrossRefGoogle Scholar
19.Li, Z. P. and Mu, C. L., Critical curves for fast diffusive non-Newtonian equation coupled via nonlinear boundary flux, J. Math. Anal. Appl. 340 (2008), 876883.CrossRefGoogle Scholar
20.Li, Z. P., Mu, C. L. and Cui, Z. J., Critical curves for a fast diffusive polytropic filtration system coupled via nonlinear boundary flux, Z. Angew. Math. Phys. 60 (2009), 284296.CrossRefGoogle Scholar
21.Li, Y. X. and Xie, C. H., Quasi-linear parabolic systems of several components, Math. Ann. 327 (2003), 395407.CrossRefGoogle Scholar
22.Lieberman, G. M., Second order parabolic differential equations (World Scientific Publishing, River Edge, 1996).CrossRefGoogle Scholar
23.Mi, Y. S., Mu, C. L. and Chen, B. T., Blow-up analysis for a fast diffusive parabolic equation with nonlinear boundary flux (preprint).Google Scholar
24.Mi, Y. S., Mu, C. L. and Chen, B. T., Critical exponents for a nonlinear degenerate parabolic system coupled via nonlinear boundary flux, J. Korean Math. Soc. 48 (2011), 513527.CrossRefGoogle Scholar
25.Mi, Y. S., Mu, C. L. and Chen, B. T., Critical exponents for a fast diffusive parabolic system coupled via nonlinear boundary flux (preprint).Google Scholar
26.Qi, Y. W., Wang, M. X. and Wang, Z. J., Existence and non-existence of global solutions of diffusion systems with nonlinear boundary conditions, Proc. R. Soc. Edinb. A 134 (2004), 11991217.CrossRefGoogle Scholar
27.Quiros, F. and Rossi, J. D., Blow-up set and Fujita-type curves for a degenerate parabolic system with nonlinear conditions, Indiana Univ. Math. J. 50 (2001), 629654.CrossRefGoogle Scholar
28.Samarskii, A. A., Galaktionov, V. A., Kurdyumov, S. P. and Mikhailov, A. P., Blow-up in quasilinear parabolic equations (Walter de Gruyter, Berlin, 1995).CrossRefGoogle Scholar
29.Vazquez, J. L., The porous medium equations: Mathematical theory (Oxford University Press, Oxford, UK, 2007).Google Scholar
30.Wang, M. X., The blow-up rates for systems of heat equations with nonlinear boundary conditions, Sci. China Ser. A 46 (2003), 169175.CrossRefGoogle Scholar
31.Wang, M. X. and Xie, C. H., Quasilinear parabolic systems with nonlinear boundary conditions, J. Differ. Equ. 166 (2000), 251265.CrossRefGoogle Scholar
32.Wang, S., Xie, C. H. and Wang, M. X., Note on critical exponents for a system of heat equations coupled in the boundary conditions, J. Math. Analysis Applic. 218 (1998), 313324.CrossRefGoogle Scholar
33.Wang, S., Xie, C. H. and Wang, M. X., The blow-up rate for a system of heat equations completely coupled in the boundary conditions, Nonlinear Anal. 35 (1999), 389398.CrossRefGoogle Scholar
34.Wang, Z. J., Yin, J. X. and Wang, C. P., Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition, Appl. Math. Lett. 20 (2007), 142147.CrossRefGoogle Scholar
35.Wang, C. P., Zheng, S. N. and Wang, Z. J., Critical Fujita exponents for a class of quasi-linear equations with homogeneous Neumann boundary data, Nonlinearity 20 (2007), 13431359.CrossRefGoogle Scholar
36.Wu, Z. Q., Zhao, J. N., Yin, J. X. and Li, H. L., Nonlinear diffusion equations (World Scientific Publishing, River Edge, NJ, 2001).CrossRefGoogle Scholar
37.Xiang, Z. Y., Chen, Q., Mu, C. L., Critical curves for degenerate parabolic equations coupled via non-linear boundary flux, Appl. Math. Comput. 189 (2007) 549559.Google Scholar
38.Zheng, S. N., Song, X. F. and Jiang, Z. X., Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux, J. Math. Anal. Appl. 298 (2004), 308324.CrossRefGoogle Scholar
39.Zheng, S. N. and Wang, C. P., Large time behaviour of solutions to a class of quasi-linear parabolic equations with convection terms, Nonlinearity 21 (2008), 21792200.CrossRefGoogle Scholar
40.Zhou, J. and Mu, C. L, Critical curve for a non-Newtonian polytropic filtration system coupled via nonlinear boundary flux, Nonlinear Anal. 68 (2008), 111.CrossRefGoogle Scholar
41.Zhou, J. and Mu, C. L., On critical Fujita exponents for degenerate parabolic system coupled via nonlinear boundary flux, Pro. Edinb. Math. Soc. 51 (2008), 785805.CrossRefGoogle Scholar