Published online by Cambridge University Press: 12 December 2011
In this paper, we deal with the global existence and blow-up of solutions to a doubly degenerative parabolic system with nonlinear boundary conditions. By constructing various kinds of sub- and super-solutions and using the basic properties of M-matrix, we give the necessary and sufficient conditions for global existence of non-negative solutions, which extend the recent results of Zheng, Song and Jiang (S. N. Zheng, X. F. Song and Z. X. Jiang, Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux, J. Math. Anal. Appl. 298 (2004), 308–324), Xiang, Chen and Mu (Z. Y. Xiang, Q. Chen, C. L. Mu, Critical curves for degenerate parabolic equations coupled via nonlinear boundary flux, Appl. Math. Comput. 189 (2007), 549–559) and Zhou and Mu (J. Zhou and C. L Mu, On critical Fujita exponents for degenerate parabolic system coupled via nonlinear boundary flux, Pro. Edinb. Math. Soc. 51 (2008), 785–805) to more general equations.