Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T17:27:56.953Z Has data issue: false hasContentIssue false

Groups whose lattices of normal subgroups are distributive

Published online by Cambridge University Press:  18 May 2009

Rolf Brandl
Affiliation:
Rolf Brandl, Math. Institut, Am Hubland 12, D-8700 Würzburg, West Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Various authors deal with distributive sublattices of the lattice ℒ(G) of subgroups of a group G. Perhaps the most basic result in this direction is due to O. Ore [9]: ℒ(G) is distributive if and only if G is locally cyclic.

In [11] and [12] finite groups with distributive lattices of subnormal subgroups were considered, while [3], [4], [7], [8], [10] and [13] deal with the case of groups G whose lattice N(G) of normal subgroups is distributive. Such groups were called DLN-groups in [10].

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1989

References

1.Brandl, R., On groups with certain lattices of normal subgroups. Arch. Math. Basel 47 (1986), 611.Google Scholar
2.Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups (Oxford, 1985).Google Scholar
3.Curzio, M., Alcune osservazioni sui reticolo dei sottogruppi d'un gruppo finito, Ricerche Mat. 6 (1957), 96110.Google Scholar
4.Curzio, M. e Permutti, R., Distributività nel reticolo dei sottogruppi normali di un T-gruppo, Matematiche (Catania) 20 (1965), 4663.Google Scholar
5.Huppert, B. and Blackburn, N., Finite groups II (Springer, 1982).Google Scholar
6.Kochendörffer, R., Über treue irreduzible Derstellungen endlicher Gruppen, Math. Nachr. 1 (1948), 2539.CrossRefGoogle Scholar
7.Longobardi, P. and Maj, M., Finite groups with nilpotent commutator subgroup, having a distributive lattice of normal subgroups, J. Algebra 101 (1986), 251261.Google Scholar
8.Maj, M., Gruppi infiniti supersoeubili con il reticolo dei sottogruppi normali distributive, Pubbl. Dip. di Mat. e Appl. 73 (1984).Google Scholar
9.Ore, O., Structures and group theory II, Duke Math. J. 4 (1938), 247269.Google Scholar
10.Pazderski, G., On groups for which the lattice of normal subgroups is distributive, Beitr. Algebra und Geometrie 24 (1987), 185200.Google Scholar
11.Zacher, G., Sui gruppi finiti per cui il reticolo dei sottogruppi di composizione è distributivo Rend. Sem. Mat. Univ. Padova 27 (1957), 7579.Google Scholar
12.Zappa, G., Sui gruppi finiti risolubili per cui il reticolo dei sottogruppi di composizione è distributivo, Boll. Un. Mat. ltal. (3) 11 (1956), 150157.Google Scholar
13.Zimmermann, I., Distributivität im Subnormalteiler- und Normalteilerverband einer Gruppe, Diplomarbeit (Freiburg, 1980).Google Scholar