Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T14:46:20.286Z Has data issue: false hasContentIssue false

HIGGS BUNDLES OVER ELLIPTIC CURVES FOR COMPLEX REDUCTIVE GROUPS

Published online by Cambridge University Press:  16 July 2018

EMILIO FRANCO
Affiliation:
CMUP (Centro de Matemática da Universidade do Porto), Universidade do Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal e-mail: emilio.franco@fc.up.pt
OSCAR GARCIA-PRADA
Affiliation:
ICMAT (Instituto de Ciencias Matemáticas), CSIC-UAM-UC3M-UCM, Calle Nicolás Cabrera 15, 28049 Madrid, Spain e-mail: oscar.garcia-prada@icmat.es
P. E. NEWSTEAD
Affiliation:
Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL, United Kingdom e-mail: newstead@liverpool.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study Higgs bundles over an elliptic curve with complex reductive structure group, describing the (normalisation of) its moduli spaces and the associated Hitchin fibration. The case of trivial degree is covered by the work of Thaddeus in 2001. Our arguments are different from those of Thaddeus and cover arbitrary degree.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2018 

References

REFERENCES

1. Atiyah, M. F., Vector bundles over elliptic curves, Proc. Lond. Math. Soc. 3–7 (1957), 414452.Google Scholar
2. Atiyah, M. F. and Bott, R., The Yang–Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. Lond. A 308 (1982), 523615.Google Scholar
3. Bernstein, N. and Shvartzman, O. V., Chevalley's theorem form complex crystallographic Coxeter groups, Funct. Anal. Appl. 12 (1978), 308310.Google Scholar
4. Biswas, I. and Ramanan, S., An infinitesimal study of the moduli of Hitchin pairs, J. Lond. Math. Soc. 49 (2) (1994), 219231.Google Scholar
5. Borel, A., Friedman, R. and Morgan, J., Almost commuting elements in compact Lie groups, Memoirs Am. Math Soc. 157 (747) (2002).Google Scholar
6. Bröcker, T. and Dieck, T. tom, Representations of compact lie groups, GTM 98 (Springer–Verlag, New York, 1985).Google Scholar
7. Corlette, K., Flat G-bundles with canonical metrics, J. Diff. Geom. 28 (3) (1988), 361382.Google Scholar
8. Donagi, R., Decomposition of spectral covers, Journeés de Geometrie Algebrique D'Orsay, Astérisque 218 (1993), 145175.Google Scholar
9. Donagi, R. and Pantev, T., Langlands duality for Hitchin systems, Inv. Math. 189 (3) (2011), 653735.Google Scholar
10. Donaldson, S., Twisted harmonic maps and the self-duality equations, Proc. Lond. Math. Soc. 3–55 (1) (1987), 127131.Google Scholar
11. Faltings, G., Stable G-bundles and projective connections, J. Algebraic Geom. 2 (1993), 507568.Google Scholar
12. Franco, E., Higgs bundles over elliptic curves, PHD Thesis. Available at https://www.icmat.es/Thesis/EFrancoGomez.pdf.Google Scholar
13. Franco, E., Garcia-Prada, O. and Newstead, P. E., Higgs bundles over elliptic curves, Illinois J. Math. 56 (1) (2014), 4396.Google Scholar
14. Friedman, R. and Morgan, J., Holomorphic principal bundles over elliptic curves I. arXiv:math/9811130 [math.AG].Google Scholar
15. Friedman, R. and Morgan, J., Holomorphic principal bundles over elliptic curves II, J. Diff. Geom. 56 (2000), 301379.Google Scholar
16. Friedman, R., Morgan, J. and Witten, E., Principal G-bundles over elliptic curves, Res. Lett. 5 (1998), 97118.Google Scholar
17. Garcia-Prada, O., Gothen, P. and Riera, I. Mundet i, The Hitchin–Kobayashi correspondence, Higgs pairs and surface group representations, (2012). arXiv:0909.4487v3 [math.DG].Google Scholar
18. Helmke, S. and Slodowy, P., On unstable principal bundles over elliptic curves, Publ. RIMS, Kyoto Univ. 37 (2001), 349395.Google Scholar
19. Hitchin, N. J., The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 3–55 (1) (1987), 59126.Google Scholar
20. Hitchin, N. J., Stable bundles and integrable systems, Duke Math. J. 54 (1) (1987), 91114.Google Scholar
21. Joseph, A., On a Harish-Chandra homomorphism, C. R. Acad. Sci. Paris 324 (1997), 759764.Google Scholar
22. Laszlo, Y., About G-bundles over elliptic curves, Ann. Inst. Fourier, Grenoble 48 (2) (1998), 413424.Google Scholar
23. Levasseur, T., Differential operators on a reductive Lie algebra, Lectures given at the University of Washington, Seattle (1995). Available at http://lmba.math.univ-brest.fr/perso/thierry.levasseur/.Google Scholar
24. Looijenga, E., Root systems and elliptic curves, Inv. Math. 38 (1976), 1732.Google Scholar
25. Narasimhan, M. S. and Seshadri, C., Stable and unitary vector bundles on a compact Riemann surface, Ann. Math. 82 (2) (1965), 540567.Google Scholar
26. Nitsure, N., Moduli space of semistable pairs on a curve, Proc. London Math. Soc. 3–62 (1991), 275300.Google Scholar
27. Ramanathan, A., Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129152.Google Scholar
28. Richardson, R. W., Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), 135.Google Scholar
29. Schweigert, C., On moduli spaces of flat connections with non-simply connected structure group, Nucl. Phys. B 492 (1997), 743755.Google Scholar
30. Simpson, C. T., Higgs bundles and local systems, Inst. Hautes Etudes Sci. Publ. Math. 75 (1992), 595.Google Scholar
31. Simpson, C. T., Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math., Inst. Hautes Etud. Sci. 79 (1994), 47129.Google Scholar
32. Simpson, C. T., Moduli of representations of the fundamental group of a smooth projective variety II, Publ. Math., Inst. Hautes Etud. Sci. 80 (1995), 579.Google Scholar
33. Thaddeus, M., Mirror symmetry, Langlands duality and commuting elements of Lie groups, Int. Math. Res. Not. 22 (2001), 11691193.Google Scholar