We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper, we provide two new extensions to a lemma of Bernik (1983). Applications are also discussed.
Baker, A. and Schmidt, W. M., Diophantine approximation and Hausdorff dimension, Proc. Lond. Math. Soc. 21 (1970), 1–11.CrossRefGoogle Scholar
2
Baker, R. C., Sprindžuk’s theorem and Hausdorff dimension, Mathematika23(2) (1976), 184–197.CrossRefGoogle Scholar
3
Beresnevich, V., On approximation of real numbers by real algebraic numbers, Acta Arith. 90 (1999), 97–112.CrossRefGoogle Scholar
4
Beresnevich, V., Bernik, V. I., and Götze, F., Integral polynomials with small discriminants and resultants, Adv. Math. 298 (2016), 393–412.10.1016/j.aim.2016.04.022CrossRefGoogle Scholar
5
Bernik, V. I., A metric theorem on the simultaneous approximation of zero by the values of integral polynomials, Math. USSR-Izv. 16(1) (1981), 21–40.CrossRefGoogle Scholar
6
Bernik, V. I., Application of the Hausdorff dimension in the theory of Diophantine approximation, Acta Arith. 42(3) (1983), 219–253. (in Russian)Google Scholar
7
Bernik, V. I., Budarina, N., Dickinson, D., and Mc Guire, S., The distribution of algebraic conjugate points, in preparation.Google Scholar
8
Bernik, V. I. and Kalosha, N. I., Approximation of zero by integer polynomials in space $\mathbb{R}\times\mathbb{C}\times {\mathbb{Q}}_{p}$, Proc. Nat. Acad. Sci. Belarus Phis. Math. Ser. 1 (2004), 121–123.Google Scholar
9
Besicovitch, A., Sets of fractional dimensions. IV: On rational approximation to real numbers, J. Lond. Math. Soc.9 (1934), 126–131.CrossRefGoogle Scholar
10
Budarina, N. and Dickinson, D., Simultaneous Diophantine approximation of integral polynomials in the different metrics, Chebyshevskii Sbornik9(1) (2008), 169–184.Google Scholar
11
Feldman, N. I., Approximation of certain transcendental numbers, I. Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 53–79; English transl. in Amer. Math. Soc. Transl. 59(2) (1966).Google Scholar
Kasch, F. and Volkmann, B., Zur Mahlerschen Vermutung über S-Zahlen, Math. Ann. 136 (1958), 442–453. (in German)CrossRefGoogle Scholar
14
Koleda, D. V., An upper bound for the number of integral polynomials of third degree with a given bound for discriminants, Vestsí Nats. Akad. Navuk Belarusí Ser. Fíz.-Mat. Navuk3 (2010), 10–16. (in Russian)Google Scholar
15
Koleda, D. V. and Korlukova, I. A., Asymptotic quantity of integral quadratic polynomials with bounded discriminants, Vesnik of Yanka Kupala State University of Grodno, Series 2. 2(151) (2013), 6–10.Google Scholar
16
Kovalevskaya, E., A metric theorem on the exact order of approximation of zero by values of integer polynomials in $\mathbb{Q}_p$, Dokl. Nats. Akad. Nauk Belarusi43(5) (1999), 34–36.Google Scholar
17
Mahler, K., Über das Mass der Menge aller S-Zahlen, Math. Ann.106 (1932), 131–139.10.1007/BF01455882CrossRefGoogle Scholar
18
Pereverzeva, N. A., The distribution of vectors with algebraic coordinates in $\mathbb{R}^2$, Vestsi Akad. Naavuk BSSR. Ser. Fiz.-Mat. Navuk4 (1987), 114–116, 128. (in Russian)Google Scholar
19
Schmidt, W. M., Bounds for certain sums; a remark on a conjecture of Mahler, Trans. Amer. Math. Soc. 101 (1961), 200–210.Google Scholar
20
Sprindžuk, V. G., Mahler’s problem in the metric theory of numbers, vol. 25 (American Mathematical Society, Providence, RI, 1969).Google Scholar
21
Volkmann, B., Zur metrischen Theorie der S-Zahlen, J. Reine Angew. Math. 209 (1962), 201–210.Google Scholar