No CrossRef data available.
Article contents
Independent inner functions in the classical domains
Published online by Cambridge University Press: 18 May 2009
Extract
Let Bn denote the unit ball and Un the unit polydisc in Cn. In this paper we consider questions concerned with inner functions and embeddings of Hardy spaces over bounded symmetric domains. The main result (Theorem 2) states that for a classical symmetric domain D of type I and rank(D) = s, there exists an isometric embedding of Hl(Us) onto a complemented subspace of Hl(D). This should be compared with results of Wojtaszczyk [13] and Bourgain [3, 4] which state that H1(Bn) is isomorphic to Hl(U) while for n>m, Hl(Un) cannot be isomorphically embedded onto a complemented subspace of H1(Um). Since balls are the only bounded symmetric domains of rank 1 and they are of type I, Theorem 2 shows that if rank(D1) = 1, rank(D2) > 1 then H1(D1) is not isomorphic to H1(D2). It is natural to expect this to hold always when rank(D1 ≠ rank(D2) but unfortunately we were not able to prove this.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1987