Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T17:16:23.920Z Has data issue: false hasContentIssue false

LIE METABELIAN SKEW ELEMENTS IN GROUP RINGS

Published online by Cambridge University Press:  13 August 2013

GREGORY T. LEE
Affiliation:
Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada e-mail: glee@lakeheadu.ca
ERNESTO SPINELLI
Affiliation:
Dipartimento di Matematica ‘G. Castelnuovo’, Università degli Studi di Roma ‘La Sapienza’, P. le Aldo Moro n. 5, Rome 00185, Italy e-mail: spinelli@mat.uniroma1.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let F be a field of characteristic p ≠ 2 and G a group without 2-elements having an involution ∗. Extend the involution linearly to the group ring FG, and let (FG) denote the set of skew elements with respect to ∗. In this paper, we show that if G is finite and (FG) is Lie metabelian, then G is nilpotent. Based on this result, we deduce that if G is torsion, p > 7 and (FG) is Lie metabelian, then G must be abelian. Exceptions are constructed for smaller values of p.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2013 

References

REFERENCES

1.Amitsur, S. A., Rings with involution, Israel J. Math. 6 (1968), 99106.CrossRefGoogle Scholar
2.Balogh, Zs., Lie derived length and involutions in group algebras, J. Pure Appl. Algebra 216 (2012), 12821287.Google Scholar
3.Balogh, Zs. and Juhász, T., Derived lengths of symmetric and skew symmetric elements in group algebras, JP J. Algebra Number Theory Appl. 12 (2008), 191203.Google Scholar
4.Broche Cristo, O., Jespers, E., Milies, C. Polcino and Marín, M. Ruiz, Antisymmetric elements in group rings II, J. Algebra Appl. 8 (2009), 115127.Google Scholar
5.Catino, F., Lee, G. T. and Spinelli, E., The bounded Lie Engel property on torsion group algebras, J. Pure Appl. Algebra 215 (2011), 26392644.CrossRefGoogle Scholar
6.Catino, F., Lee, G. T. and Spinelli, E., Group algebras whose symmetric elements are Lie metabelian, Forum Math. (to appear). doi:10.1515/forum-2012-0005.Google Scholar
7.Giambruno, A., Polcino Milies, C. and Sehgal, S. K., Group algebras of torsion groups and Lie nilpotence, J. Group Theory 13 (2010), 221231.CrossRefGoogle Scholar
8.Giambruno, A. and Sehgal, S. K., Lie nilpotence of group rings, Comm. Algebra 21 (1993), 42534261.Google Scholar
9.Lee, G. T., The Lie n-Engel property in group rings, Comm. Algebra 28 (2000), 867881.CrossRefGoogle Scholar
10.Lee, G. T., Group identities on units and symmetric units of group rings (Springer, London, 2010).Google Scholar
11.Lee, G. T., Sehgal, S. K. and Spinelli, E., Group algebras whose symmetric and skew elements are Lie solvable, Forum Math. 21 (2009), 661671.CrossRefGoogle Scholar
12.Lee, G. T. and Spinelli, E., Group rings whose symmetric units are solvable, Comm. Algebra 37 (2009), 16041618.CrossRefGoogle Scholar
13.Levin, F. and Rosenberger, G., Lie metabelian group rings, in Group and semigroup rings, North-Holland Mathematical Studies 126 (Elsevier, Amsterdam, Netherlands, 1986), 153161.Google Scholar
14.Levin, F. and Rosenberger, G., On Lie metabelian group rings, Results Math. 26 (1994), 8388.Google Scholar
15.Passman, D. S., The algebraic structure of group rings (Wiley, New York, 1977).Google Scholar
16.Robinson, D. J. S., A course in the theory of groups, 2nd ed. (Springer, New York, 1996).Google Scholar
17.Siciliano, S., On the Lie algebra of skew-symmetric elements of an enveloping algebra, J. Pure Appl. Algebra 215 (2011), 7276.Google Scholar