Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-15T13:12:13.437Z Has data issue: false hasContentIssue false

Local spectral theory and spectral inclusions

Published online by Cambridge University Press:  18 May 2009

Kjeld B. Laursen
Affiliation:
Mathematics Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
Michael M. Neumann
Affiliation:
Department of Mathematics and Statistics, Mississippi State University, P.O. Drawer Ma, Mississippi State, MS 39762, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose that T and S are continuous linear operators on complex Banach spaces X and Y, respectively, and that A is a non-zero continuous linear mapping from X to Y. If A intertwines T and S in the sense that SA = AT, then a classical result due to Rosenblum implies that the spectra σ(T) and σ(S) must overlap, see [12]. Actually, Davis and Rosenthal [5]have shown that the surjectivity spectrum σsu(T) will meet the approximate point spectrum σap(S) in this case (terms to be denned below). Further information about the relations between the two spectra and their finer structure becomes available when the intertwiner A is injective or has dense range, see [9], [12], [13].

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1994

References

REFERENCES

1.Albrecht, E. and Eschmeier, J., Analytic functional models and local spectral theory (submitted).Google Scholar
2.Berberian, S. K., Lectures in functional analysis and operator theory (Springer-Verlag, 1974).CrossRefGoogle Scholar
3.Bishop, E., A duality theorem for an arbitrary operator, Pacific J. Math. 9 (1959), 379397.CrossRefGoogle Scholar
4.Colojoară, I. and Foiaş, C., Theory of generalized spectral operators (Gordon and Breach, New York, 1968).Google Scholar
5.Davis, C. and Rosenthal, P., Solving linear operator equations, Canad. J. Math. 26 (1974), 13841389.CrossRefGoogle Scholar
6.Engelking, R., General topology (Polish Scientific Publishers, Warsaw, 1977).Google Scholar
7.Eschmeier, J., Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie, Habilitationsschrift, Schriftenreihe Math. Inst. Universität Münster 2.42, 1987.Google Scholar
8.Eschmeier, J. and Prunaru, B., Invariant subspaces for operators with Bishop's property (β) and thick spectrum, J. Functional Analysis 94 (1990), 196222.CrossRefGoogle Scholar
9.Fialkow, L. A., A note on quasisimilarity of operators, Ada Sci. Math. (Szeged) 39 (1977), 6785.Google Scholar
10.Foiaş, C., and Vasilescu, F.-H., On the spectral theory of commutators, J. Math. Anal. Appl. 31 (1970), 473486.CrossRefGoogle Scholar
11.Frunză, S., A complement to the duality theorem for decomposable operators, Rev. Roumaine Math. Pures Appl. 28 (1983), 475478.Google Scholar
12.Grabiner, S., Spectral consequences of the existence of intertwining operators, Comment. Math. Pace Mat. 22 (1980/1981), 227238.Google Scholar
13.Hoover, T. B., Quasisimilarity of operators, Illinois J. Math. 16 (1972), 678686.CrossRefGoogle Scholar
14.Kato, T., Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261322.CrossRefGoogle Scholar
15.Laursen, K. B. and Vrbová, P.;, Some remarks on the surjectivity spectrum of linear operators, Czech. Math. J. 39 (1989), 730739.CrossRefGoogle Scholar
16.Laursen, K. B. and Neumann, M. M., Asymptotic intertwining and spectral inclusions on Banach spaces, Czech. Math. J. 43 (1993), 483497.CrossRefGoogle Scholar
17.Leiterer, J., Banach coherent analytic Fréchet sheaves, Math. Nachr. 85 (1978), 91109.CrossRefGoogle Scholar
18.Miller, V. G. and Neumann, M. M., Local spectral theory for multipliers and convolution operators, in Algebraic methods in operator theory (Birkhäuser-Verlag, Boston, 1994), 2536.CrossRefGoogle Scholar
19.Schmoeger, C., Ein Spektralabbildungssatz, Arch. Math (Basel) 55 (1990), 484489.CrossRefGoogle Scholar
20.Sun, S. L., The single-valued extension property and spectral manifolds, Proc. Amer. Math. Soc. 118, (1993), 7787.CrossRefGoogle Scholar
21.Vasilescu, F.-H., Analytic functional calculus and spectral decompositions (Editura Academiei and D. Reidel Publishing Company, Bucharest and Dordrecht, 1982).Google Scholar