Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T06:52:54.540Z Has data issue: false hasContentIssue false

LOCAL SUPREMA OF DIRICHLET POLYNOMIALS AND ZEROFREE REGIONS OF THE RIEMANN ZETA-FUNCTION

Published online by Cambridge University Press:  22 August 2014

MICHEL J. G. WEBER*
Affiliation:
IRMA, 10 rue du Général Zimmer, 67084 Strasbourg Cedex, France e-mail: michel.weber@math.unistra.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new family of zerofree region of the Riemann Zeta-function ζ is identified by using Turán's (P. Turán, Eine neue Methode inter Analysis und deren Anwendungen (Akadémiai Kiadó, Budapest, Hungary, 1953); Analytic number theory, Proc. Symp. Pure Math., vol. XXIV (Amer. Math. Soc. Providence, RI, 1972)) localization criterion linking zeros of ζ with uniform local suprema of sets of Dirichlet polynomials expanded over the primes. The proof is based on a randomization argument. An estimate for local extrema for some finite families of shifted Dirichlet polynomials is established by preliminary considering their local increment properties by means of Montgomery-Vaughan's variant of Hilbert's inequality. A covering argument combined with Turán's localization criterion allows to conclude.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2014 

References

REFERENCES

1.Landau, E., Vorlesungen über Zahlentheorie, vol. I–II (S. Hirzel, Leipzig, Germany, 1927).Google Scholar
2.Montgomery, H., Ten lectures on the interface between analytic number theory and harmonic analysis, Regional Conference Series in Math., vol. 84 (Conference Board of the Math. Sciences, Washington DC, 1993).Google Scholar
3.Turán, P., Eine neue Methode inter Analysis und deren Anwendungen (Akadémiai Kiadó, Budapest, Hungary, 1953).Google Scholar
4.Turán, P., Exponential sums and the Riemann conjecture, in Analytic number theory, Proc. Symp. Pure Math. vol. XXIV, St. Louis Univ., St Louis, MO, 1972 (Amer. Math. Soc. Providence, RI, 1973), 305314.CrossRefGoogle Scholar