Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T06:59:53.589Z Has data issue: false hasContentIssue false

Matched pairs of Lie algebroids

Published online by Cambridge University Press:  18 May 2009

Tahar Mokri
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield, S3 7RH, England. Email: t.mokri@sheffield.ac.nk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We extend to Lie algebroids the notion variously known as a double Lie algebra (Lu and Weinstein), matched pair of Lie algebras (Majid), or twilled extension of Lie algebras (Kosmann-Schwarzbach and Magri). It is proved that a matched pair of Lie groupoids induces a matched pair of Lie algebroids. Conversely, we show that under certain conditions a matched pair of Lie algebroids integrates to a matched pair of Lie groupoids. The importance of matched pairs of Lie algebroids has been recently demonstrated by Lu.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1997

References

REFERENCES

1.Albert, C. and Dazord, P., Théorie des groupoïdes de Lie, Publication du Département de Mathématiques de l'Université de Lyon (1989), 53105.Google Scholar
2.Coste, A., Dazord, P. and Weinstein, A., Groupoïdes symplectiques, Publications du Département de Mathématiques de l'Université de Lyon, 1, 2/A (1987).Google Scholar
3.Brown, R., From groups to groupoids: a brief suvery, Bull. London Math. Soc. 19 (1987), 113134.CrossRefGoogle Scholar
4.Dieudonné, J.Treatise on analysis, Volume 3 (Academic Press, 1972).Google Scholar
5.Drinfel'd, V. G., Hamilton structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Soviet Math. Dokl. 27(1) (1983) 6871.Google Scholar
6.Higgins, P. J. and Mackenzie, K., Algebraic constructions in the category of Lie algebroids, J. Algebra 129 (1990), 194230.CrossRefGoogle Scholar
7.Kosmann-Schwarzbach, Y. and Magri, F., Poisson Lie groups and complete integrabilitity, I, Ann. Inst. H. Poincaré 49 (1988), 433460.Google Scholar
8.Kumpera, A. and Spencer, D. C., Lie equations, volume 1: General theory, (appendix) (Princeton University Press, 1972).Google Scholar
9.Lu, J. H., PhD thesis, University of California, Berkeley (1990).Google Scholar
10.Lu, J. H., Lie algebroids associated to Poisson actions, preprint, University of Arizona (1995).Google Scholar
11.Lu, J. H. and Weinstein, A., Poisson Lie groups, dressing transformations and Bruhat decomposition, J. Differential Geom. 31 (1990) 501526.CrossRefGoogle Scholar
12.Lu, J. H. and Weinstein, A., Groupoïdes symplectiques doubles des groupoïdes de Lie Poisson, CR Acad Sci Paris sér. 1, Maths 309 (1989), 951954.Google Scholar
13.Mackenzie, K., Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, Vol. 124 (Cambridge Univ. Press, Cambridge, 1988).Google Scholar
14.Mackenzie, K., Double Lie algebroids and second order geometry, 1, Advances in Mathematics, 94, No. 2 (1992) 180239.CrossRefGoogle Scholar
15.Mackenzie, K. and Xu, P., Lie bialgebroids and Poisson groupoids, Duke Math. J., 73(2) (1994), 415452.CrossRefGoogle Scholar
16.Mackenzie, K. and Xu, P., Integration of Lie bialgebroids, preprint, University of Sheffield (1995).Google Scholar
17.Majid, S. H., Matched pairs of Lie groups associated to solutions of the Yang Baxter equations, Pacific J. Math. 141 No 2 (1990), 311332.CrossRefGoogle Scholar
18.Majid, S. H., Physics for algebraists: non-commutative and non-commutative Hopf algebras by a bicrossproduct construction, J. Algebra, 130 (1990), 1764.CrossRefGoogle Scholar
19.Mokri, T., PhD thesis (University of Sheffield, 1995).Google Scholar