Article contents
Matrices over orthomodular lattices
Published online by Cambridge University Press: 18 May 2009
Extract
In this paper elementary properties are established for matrices whose coordinates are elements of a lattice L. In particular, many of the results of Luce [4] are extended to the case where L is an orthomodular lattice, a lattice with an orthocomplementation denoted by in which a ≦ b ⇒ a ∨(a′ ∧ b) = b. Originally, these were called orthocomplemented weakly modular lattices, Foulis [2]. In Theorem 1 a characterization is given of the nucleus with respect to matrix multiplication, which is in general nonassociative. Matrices with A-1 = transpose (A) are characterized in Lemma 8. Theorems 3 and 4 respectively, give partial characterizations of zero divisors and inverses.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1969
References
REFERENCES
- 5
- Cited by