Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T10:15:23.323Z Has data issue: false hasContentIssue false

THE MEAN SQUARE OF THELOGARITHM OF THE ZETA-FUNCTION

Published online by Cambridge University Press:  01 May 2000

MICHEL BALAZARD
Affiliation:
Laboratoire d'Algorithmique Arithmétique (CNRS), Mathématiques, Université de Bordeaux 1, 351, cours de la Libération, 33405 Talence, Francebalazard@math.u-bordeaux.fr
ALEKSANDAR IVIĆ
Affiliation:
Katedra Matematike RGF-a, Universiteta u Beogradu, Dju{\breve s}ina 7, 11000 Beograd, Serbia (Yugoslavia)aleks@ivic.matf.bg.ac.yu, aivic@rgf.rgf.bg.ac.yu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the function R(T,σ), which denotes the error term in the asymptotic formula for \int_0^T|\log\zeta(σ + it)|^2dt. It is shown thatR(T,σ) is uniformly bounded for σ \ge 1 and almost periodic in the sense of Bohr for fixed σ \ge 1; hence R(T,σ) = Ω(1) when T \to \infty. In case {1 \over 2}<σ<1 is fixed we can obtain the bound R(T,σ) \ll_ϵ T\,^{(9-2σ)/8+ϵ}.

Type
Research Article
Copyright
2000 Glasgow Mathematical Journal Trust