Article contents
Minimum topological genus of compact bordered Klein surfaces admitting a prime-power automorphism
Published online by Cambridge University Press: 18 May 2009
Extract
In the nineteenth century, Hurwitz [8] and Wiman [14] obtained bounds for the order of the automorphism group and the order of each automorphism of an orientable and unbordered compact Klein surface (i. e., a compact Riemann surface) of topological genus g s 2. The corresponding results of bordered surfaces are due to May, [11], [12]. These may be considered as particular cases of the general problem of finding the minimum topological genus of a surface for which a given finite group G is a group of automorphisms. This problem was solved for cyclic and abelian G by Harvey [7] and Maclachlan [10], respectively, in the case of Riemann surfaces and by Bujalance [2], Hall [6] and Gromadzki [5] in the case of non-orientable and unbordered Klein surfaces. In dealing with bordered Klein surfaces, the algebraic genus—i. e., the topological genus of the canonical double covering, (see Alling-Greenleaf [1])—was minimized by Bujalance- Etayo-Gamboa-Martens [3] in the case where G is cyclic and by McCullough [13] in the abelian case.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1995
References
REFERENCES
- 4
- Cited by