Published online by Cambridge University Press: 18 May 2009
In a recent paper Cooke [1] obtained a solution of the integral equation
by using the identity
and the technique, first used by Copson, of interchanging the orders of integration and hence reducing the problem to that of the successive solution of two Abel integral equations. It is also shown in [1] that the above identity can also be used to solve the dual series equations
The kernel in equation (1) is a particular member of a general class of kernels which the author [6] has shown to be such that the resulting integral equation is directly soluble by using Copson's technique. The particular example of equation (1) is given in [6] and the identity of equation (2) was used by the author [7] to obtain the solution of equation (3).