Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T06:13:09.515Z Has data issue: false hasContentIssue false

A NOTE ON p-ADIC SIMPLICIAL VOLUMES

Published online by Cambridge University Press:  13 August 2020

STEFFEN KIONKE
Affiliation:
Fakultät für Mathematik und Informatik, Fernuniversität in Hagen, 58084Hagen, Germany, e-mail: steffen.kionke@fernuni-hagen.de
CLARA LÖH
Affiliation:
Fakultät für Mathematik, Universität Regensburg, 93040Regensburg, Germany, e-mail: clara.loeh@mathematik.uni-r.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We define and study generalizations of simplicial volume over arbitrary seminormed rings with a focus on p-adic simplicial volumes. We investigate the dependence on the prime and establish homology bounds in terms of p-adic simplicial volumes. As the main examples, we compute the weightless and p-adic simplicial volumes of surfaces. This is based on an alternative way to calculate classical simplicial volume of surfaces without hyperbolic straightening and shows that surfaces satisfy mod p and p-adic approximation of simplicial volume.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

References

Avramidi, G., Okun, B. and Schreve, K., Mod p and torsion homology growth in nonpositive curvature, preprint, arXiv:2003.01020 (2020).CrossRefGoogle Scholar
Benedetti, R. and Petronio, C., Lectures on hyperbolic geometry (Universitext. Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
Eells, J. and Wood, J. C., Restrictions on harmonic maps of surfaces, Topology 15(3) (1976), 263266.CrossRefGoogle Scholar
Eisermann, M., The fundamental theorem of algebra made effective: an elementary real-algebraic proof via Sturm chains, Amer. Math. Monthly 119(9) (2012), 715752.CrossRefGoogle Scholar
Fauser, D., Integral foliated simplicial volume and S 1-actions, PhD Thesis (Universiät Regensburg, 2019).Google Scholar
Fauser, D., Friedl, S. and Löh, C., Integral approximation of simplicial volume of graph manifolds, Bull. Lond. Math. Soc. 51(4) (2019), 715731.CrossRefGoogle Scholar
Fauser, D., Löh, C., Moraschini, M. and Quintanilha, J. P., Stable integral simplicial volume of 3-manifolds, preprint, arXiv:1910.06120 (2019).Google Scholar
Francaviglia, S., Frigerio, R. and Martelli, B., Stable complexity and simplicial volume of manifolds, J. Topol. 5(4) (2012), 9771010.CrossRefGoogle Scholar
Frigerio, R., Löh, C., Pagliantini, C. and Sauer, R., Integral foliated simplicial volume of aspherical manifolds, Israel J. Math. 216(2) (2016), 707751.CrossRefGoogle Scholar
Gromov, M., Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1983), 599 (1982).Google Scholar
Gromov, M., Metric structures for Riemannian and non-Riemannian spaces , Progress in Mathematics, vol. 152 (Birkhäuser, 1999). with appendices by Katz, M., Pansu, P., and Semmes, S., translated by Bates, S.M..Google Scholar
Hatcher, A., Algebraic topology (Cambridge University Press, Cambridge, 2002).Google Scholar
Heuer, N. and Löh, C., Transcendental simplicial volumes, preprint, arXiv:1911.06386 (2019).Google Scholar
Löh, C., Odd manifolds of small integral simplicial volume, Ark. Mat. 56(2) (2018), 351375.CrossRefGoogle Scholar
Löh, C., Rank gradient versus stable integral simplicial volume, Period. Math. Hungar. 76(1) (2018), 8894.CrossRefGoogle Scholar
Löh, C., Simplicial volume with ${\mathbb F_p}$-coefficients, Period. Math. Hungar. 80(1) (2020), 3858.CrossRefGoogle Scholar
Lück, W., L 2 -Invariants: Theory and applications to geometry and K-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44 (Springer-Verlag, Berlin, 2002).Google Scholar
Munkholm, H. J., Simplices of maximal volume in hyperbolic space, Gromov’s norm, and Gromov’s proof of Mostow’s rigidity theorem (following Thurston), in Topology Symposium, Siegen 1979 (Proceedings of a Symposium, University of Siegen, Siegen, 1979), Lecture Notes in Mathematics, vol. 788 (Springer, Berlin, 1980), 109–124.CrossRefGoogle Scholar
Neukirch, J., Algebraic number theory , Grundlehren der Mathematischen Wissenschaften, vol. 322 (Springer-Verlag, Berlin, 1999).Google Scholar
Sauer, R., Volume and homology growth of aspherical manifolds, Geom. Topol. 20(2) (2016), 10351059.CrossRefGoogle Scholar
Schmidt, M., L 2-Betti numbers of ${\mathcal R}$-spaces and the integral foliated simplicial volume, PhD Thesis (Westfälische Wilhelms-Universität Münster, 2005). http://nbn-resolving.de/urn:nbn:de:hbz:6-05699458563.Google Scholar
Weihrauch, K., Computable analysis, Texts in Theoretical Computer Science. An EATCS Series (Springer-Verlag, Berlin, 2000). An introduction.Google Scholar
Zheng, X. and Rettinger, R., Weak computability and representation of reals, MLQ Math. Log. Q. 50(4–5) (2004), 431442.CrossRefGoogle Scholar