No CrossRef data available.
Article contents
The number of sparsely edged labelled Hamiltonian graphs
Published online by Cambridge University Press: 18 May 2009
Extract
An (n, q) graph is a graph on n labelled points and q lines, no loops and no multiple lines. We write N = ½n(n – 1), B(a, b) = a!/{b!(a – b)!} and B(a, 0) = 1, so that there are just B(N, q)different (n, q) graphs. Again h(n, q) is the number of Hamiltonian (n, q) graphs. Much attention has been devoted to the problem of determining for which q = q(n) “almost all” (n, q) graphs are Hamiltonian, i.e. for which q we have
as n → ∞. I proved [8, Theorem 4] that qn–3/2; → ∞ is a sufficient condition by showing that, for such q, almost all (n, q) graphs have about the average number of Hamiltonian circuits (H.c.s).
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1983