Article contents
On asymptotic values of certain sets of attached prime ideals
Published online by Cambridge University Press: 18 May 2009
Extract
In his paper [1], M. Brodmann showed that if M is a1 finitely generated module over the commutative Noetherian ring R (with identity) and a is an ideal of R then the sequence of sets {Ass(M/anM)}n∈ℕ and {Ass(an−1M/anM)}n∈ℕ (where ℕ denotes the set of positive integers) are eventually constant. Since then, the theory of asymptotic prime divisors has been studied extensively: in [5], Chapters 1 and 2], for example, various results concerning the eventual stable values of Ass(R/an;) and Ass(an−1/an), denoted by A*(a) and B*(a) respectively, are discussed. It is worth mentioning that the above mentioned results of Brodmann still hold if one assumes only that A is a commutative ring (with identity) and M is a Noetherian A-module, and AssA(M), in this situation, is regarded as the set of prime ideals belonging to the zero submodule of M for primary decomposition.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1988
References
- 2
- Cited by