No CrossRef data available.
Published online by Cambridge University Press: 29 March 2010
We show that the set of complex numbers which are badly approximable by ratios of elements of the ring of integers in , where D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} has maximal Hausdorff dimension. In addition, the intersection of these sets is shown to have maximal dimension. The results remain true when the sets in question are intersected with a suitably regular fractal set.