Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T13:49:18.719Z Has data issue: false hasContentIssue false

On Fréchet-differentiability of Nemytskij operators acting in Hölder spaces

Published online by Cambridge University Press:  18 May 2009

Manfred Goebel
Affiliation:
Martin-Luther-Universität, Sektion Mathematik, Universitätsplatz 6, G.D.R.-4020 Halle (Saale)
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In any field of nonlinear analysis Nemytskij operators, the superposition operators generated by appropriate functions, play a crucial part. Their analytic properties depend on the postulated properties of the defining function and on the function space in which they are considered. A rich source for related questions is the monograph by J. Appell and P. P. Zabrejko [2] and the survey paper by J. Appell [1].

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1991

References

REFERENCES

1.Appell, J., The superposition operator in function spaces — a survey. Preprint 141 (Mathematisches Institut Universität Augsburg, 1987).Google Scholar
2.Appell, J., Zabrejko, P. P., Nonlinear superposition operators, Cambridge Tracts in Mathematics 95 (Cambridge University Press, 1989).Google Scholar
3.Appell, J., Pascale, E. De, Zabrejko, P. P., An application of B. N. Sadovskij's fixed point principle to nonlinear singular equations, Z. Anal. Anwendungen 6 (1987), 193208.CrossRefGoogle Scholar
4.Bondarenko, V. A., Zabrejko, P. P., The superposition operator in Hölder spaces (Russian), Dokl. Akad. Nauk SSR 222 (1975), 12651268.Google Scholar
5.Drábek, P., Continuity of Nemytskij's operator in Hölder spaces, Comment. Math. Univ. Carotin. 16 (1975) 3757.Google Scholar
6.Goebel, M., Oestreich, D., Optimal control of a nonlinear singular integral equation arising in electrochemical machining, Z. Anal. Anwendungen, to appear.Google Scholar
7.Nugari, R., Continuity and differentiability properties of the Nemitskii operator in Hölder spaces, Glasgow Math. J. 30 (1988), 5965.CrossRefGoogle Scholar
8.Pröβdorf, S., Einige Klassen singulärer Gleichungen (Akademie-Verlag, 1974).CrossRefGoogle Scholar