Published online by Cambridge University Press: 18 May 2009
We consider sequences (Ah)defined over the field ℚ of rational numbers and satisfying a linear homogeneous recurrence relation
with polynomial coefficients sj;. We shall assume without loss of generality, as we may, that the sj, are defined over ℤ and the initial values A0A]…, An−1 are integer numbers. Also, without loss of generality we may assume that S0 and Sn have no non-negative integer zero. Indeed, any other case can be reduced to this one by making a shift h → h – l – 1 where l is an upper bound for zeros of the corresponding polynomials (and which can be effectively estimated in terms of their heights)
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.