Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T06:10:01.086Z Has data issue: false hasContentIssue false

ON SEMIGENERIC TAMENESS AND BASE FIELD EXTENSION

Published online by Cambridge University Press:  21 July 2015

EFRÉN PÉREZ*
Affiliation:
Facultad de Matemáticas de la Universidad Autónoma de Yucatán, Periférico Norte, Tablaje 13615, junto al local del FUTV, Mérida, Yucatán, México e-mail: jperezt@uady.mx, efren_math@yahoo.com.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The notions of central endolength and semigeneric tameness are introduced, and their behaviour under base field extension for finite-dimensional algebras over perfect fields are analysed. For k a perfect field, K an algebraic closure and Λ a finite-dimensional k-algebra, here there is a proof that Λ is semigenerically tame if and only if Λ ⊗kK is tame.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2015 

References

REFERENCES

1.Anderson, F. and Fuller, K., Rings and categories of modules, Graduate texts in Math. 13, (Springer-Verlag, Berlin-Heidelberg-New York, 1973).Google Scholar
2.Auslander, M., Reiten, I. and Smalø, S., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36 (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
3.Bautista, R., Pérez, E. and Salmerón, L., On restrictions of indecomposables of tame algebras, Colloq. Math. 124 (2011), 3560.CrossRefGoogle Scholar
4.Bautista, R., Pérez, E. and Salmerón, L., On generically tame algebras over perfect fields, Adv. Math. 231 (2012), 436481.CrossRefGoogle Scholar
5.Bautista, R., Salmerón, L. and Zuazua, R., Differential tensor algebras and their module categories, London Mathematical Society Lecture Notes Series, vol. 362 (Cambridge University Press, Cambridge-New York, 2009).CrossRefGoogle Scholar
6.Crawley-Boevey, W. W., Tame algebras and generic modules, Proc. London Math. Soc. 63 (3) (1991), 241265.CrossRefGoogle Scholar
7.Crawley-Boevey, W. W., Modules of finite length over their endomorphism rings, in Representations of algebras and related topics, (Brenner, S. and Tachikawa, H., Editors) London Math. Lect. Notes Series, vol. 168 (1992), 127184.Google Scholar
8.De-Vicente, J., Guerrero, E. and Pérez, E., On the endomorphism rings of generic modules of tame triangular matrix algebras over real closed fields, Aportaciones Matemáticas 45 (2012), 1753.Google Scholar
9.Dlab, V. and Ringel, C. M., Real subspaces of a quaternion vector space, Can. J. Math. XXX No.6 (1978), 12281242.CrossRefGoogle Scholar
10.Drozd, Yu. A., Tame and wild matrix problems, in Representations and quadratic forms [Institute of Mathematics, Academic of Sciences, Ukranian SSR, Kiev (1979) 39-47]; Amer. Math. Soc. Transl. 128 (1986), 3155.Google Scholar
11.Jacobson, N., Lectures in abstract algebra, Vol. III, Theory of fields and Galois theory (Springer-Verlag, Princeton, 1964).Google Scholar
12.Kasjan, S., Auslander-Reiten sequences and base field extensions, Proc. Amer. Math. Soc. 128 (10) (2000), 28852896.CrossRefGoogle Scholar
13.Kasjan, S., Base field extensions and generic modules over finite dimensional algebras, Arch. Math. 77 (2001), 155162.CrossRefGoogle Scholar
14.Méndez, G. and Pérez, E., A remark on generic tameness preservation under base field extension, J. Algebra Appl. 12 (4) (2013), 1250183-1–1250183-4.CrossRefGoogle Scholar
15.Rowen, L. H., Ring theory (Student Edition) (Academic Press, San Diego-London, 1991).Google Scholar
16.Silver, L., Noncommutative localizations and applications, J. Algebra 7 (1967), 4476.CrossRefGoogle Scholar